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Trace formulas relate the quantum density of states to the properties of the periodic orbits of the underlying
classical system. The resulting expressions depend critically on the nature of the dynamics and whether the
orbits are stable or unstable. Several open questions exist for the class of classical systems that are near
integrability. The most important consequence of a generic perturbation to an integrable system is the creation
of resonances. We derive generalized expressions appropriate for resonances and apply them to a system that
can be taken as a paradigm for the transition from regular to chaotic dynd®i363-651X96)06506-3

PACS numbgs): 05.45:+b, 03.65.Sq, 03.26:i

I. INTRODUCTION stants of the motion as degrees of freedom, the trajectories
lie on N-dimensional tori in the R-dimensional phase
Twenty-five years ago, Gutzwiller derived a remarkablespace. In action-angle coordinates, the trajectories have fixed
semiclassical relationship between the density of states in actions and “wind around” in the angle coordinates that
quantum system and the properties of the periodic orbits imonotonically increase with time. The periodic orbits can
the underlying classical mechanical systgt). Known as  mainly be expected to fall into the category of being noniso-
the “trace formula,” it has the form of an oscillatory sum of lated since they lie on tori with rational ratios of their wind-
weighted exponentials, each term corresponding to a uniguieg numbers(otherwise they would only be quasiperiodic
periodic orbit or one of its forwardbackward multiple re-  To fill out a rational torus typically requires ah—1 param-
tracings. The phases are specified by Hamilton’s characterigter continuous family of neighboring periodic orbits. There-
tic function calculated along the periodic orbits with the in- fore, with the exception of a few central orbifa torus of
clusion of topological phases. Although the phase variegero extent in all but one action coordingtthe Gutzwiller
from orbit to orbit, the nature of the dynamics, be it inte- amplitude for stable orbits is insufficient to treat integrable
grable or chaotic, does not specifically enter into its defini-systems. Expressions such as the ones derived by Balian and
tion. On the other hand, the weighting of each term or prefBloch [2] and later in a general action-angle formalism by
actor carries information about the local flow of the Berry and Tabof3] are then needed. We will return to that
trajectories neighboring the periodic orbit and thus is sensisubject later.
tive to the structure of the dynamics. As a result, a great deal It is in the context of the correspondence principle for
of effort is typically required to derive the prefactors underchaotic systems, about which almost nothing was known
the various circumstances that arise. prior, that the majority of the work and greatest interest in
In Gutzwiller's derivation of the trace formula, he gener- the trace formula has been focused. The fully chaotic system
ates the expressions for well isolated orbits whose local dyhas only unstable motion, no tori exist, and the majority of
namics are captured by linearization as corresponds to thge shorter and medium length periodic orbits would typi-
method of stationary phase. In two degrees of freedontally be isolated and sufficiently linearizable to satisfy the
(N=2) there exist two possibilities; the orbits are eitherconditions of Gutzwiller's derivation. A number of successes
stable or unstable and both expressions were given. Fdrave been achieved whereby an evaluation of the trace for-
N>2, various combinations of the simple stable and unstablenula correctly predicts the lowest-lying energy levels in a
motions are possible still within the assumption of the orbits‘chaotic” spectrum[4]. Perhaps more importantly, working
being isolated. in a reverse fashion, oscillations in physical observables or
When discussing the various possible system dynamics, densities of states were associated with underlying classical
is advantageous to take a more global viewpoint than jusperiodic orbits[5]. The trace formula furthermore played an
classifying every periodic orbit with regard to its stability essential role, along with the Hannay-Ozorio sum félgin
analysis. For our purposes, systems may be thought of @erry’s derivation of the connection between long periodic
belonging to one of a few classes: integrable, near-integrablerbits uniformly wandering in phase space and spectral rigid-
mixed phase space, and fully chaotic. The extreme limits ofty [7] as found in random matrix theori¢8].
integrable or fully chaotic motion pose the fewest complica- The level of difficulty that the dynamics presents in find-
tions. For integrable systems where there exist as many coimag an appropriate trace formula tremendously increases
away from these two extremes. The near-integrable regime is
characterized by imagining a weak generic perturbation to an
“Permanent address: Division de PhysiquédFtypie, Institut de  integrable system. The vast majority of the irrational tori
Physique Nuclaire, 91406 Orsay Cedex, France. continue to exist in some distorted fashion consistent with

1063-651X/96/541)/136(17)/$10.00 54 136 © 1996 The American Physical Society



54 NEAR-INTEGRABLE SYSTEMS: RESONANCES AND ... 137

paradigm for studies of the regular-to-chaotic-motion transi-
tion. Ozorio de Almeida and Hann42] also discuss satel-

lite periodic orbits coalescing with central ones and give the
appropriate normal forms. This generates standard diffrac-
tion catastrophe integrals. Recent wl8] has investigated

the most important diffraction case for the paradigm pre-
sented here and we shall not discuss the coalescence problem
further. Atkins and Ezra have also very recently discussed
certain resonancg44], but not the generalization of Ozorio

de Almeida’s theory presented here.

Finally, mixed phase space systems are characterized by
widespread chaotic motion with significant embedded
Kol'mogorov-Arnol'd-Moser (KAM) regions, i.e., regions
whose phase spaces are structured like near-integrable sys-
tems. Mixed systems are extremely interesting because they
form the most generic class of systems and are quite preva-
lent. Examples abound in the dynamical modaisharmonic
oscillatorg of vibrational motion in simple molecules,
atomic physics problems such as the diamagnetic Hydrogen
atom, and others. These systems are the most complicated
and very little has been written about the form that their trace
o, . ~ formulas should possess. To begin with, all the dynamical

FIG. 1. g,=0 Poincaresections for a system of coupled quartic ¢omplications of the near-integrable regime are associated
oscillators governed by the Hamiltonian Hg.1). As the perturba- | itk 'the KAM regions as well and the expressions given in
tion is turned on, the resonant tori of the integrable=(0.00) case this paper do apply to the KAM regions of mixed systems.
are replaced by island chains. For stronger coupling, chaotic regiorﬁevertheless, although our ultimate goal is to treat mixed

begin to develop. systems, we just address the near-integrable regime in this

) , . Some of the additional problems of such systems that
the theorem of Kol'mogorov, Armol'd, and Mos€®]. They ~ PaPer .
constitute a relative measure of the available phase spaé main to be understood af@ the chaos-KAM borders that

near unity. Yet the rational tori have all disappeared beinggeso have structure on all scalés) trapping in the border

replaced by chains of resonances on all scales: see Fig. gions introducing intermittency in the chaotic part of the

Considering that the periodic orbits were originally on the. ¥naénici, antq(iii)dthat th;ehr'e ;)k:‘tenhexift miniscule stable
rational tori, a number of problems arise in attempting to's %I[]h's of motion eeP_W'd in fe”c aO{/(\:/reglor). in Sec. I
apply the trace formula blindly. Though the stable and per- IS paper Is organized as Tollows. We begin in Sec.

turbatively introduced unstable periodic orbits may now beWlth an overview of integrable and near-integrable systems,

isolated in a mathematical sense, one cannot expect the val?rting .With th? ideas 9f B_erry-Tabor for nonisolated. peri—.
majority of periodic orbits to be locally linearizable over a odic orbits and introducing in a second stage the semiclassi-

volume related to Planck’s constafit This is true indepen- cal theory of Ozorio de Almeida. In Sec. Ill we then derive
dently of how deep the system is into the short-wavelengt n ext_ended expression for mterpola_tlng the Be_rw-Tabor and
regime. The Gutzwiller expression for the prefactors will utzwaller amphtudgs. A method of implementing the reso-
generally hold for at most a few orbits, diverge for certain"aNce expressions is part of the de_velopment. At this point, a
multiple retracings, and not be applicab]e to others method of analysis is introduced, in Sec. Ill D, that can be

Ozorio de Almeida considered the question of isolateotﬂoﬁht gf as “in\f/efrse*:jspectroslc%py.” Fti_nally,_lilntSec. IV_
resonance$10], i.e., the most significant by-product of a '€ tWo-degree-ol-ireedom coupled quartic oscillators are in-

generic perturbation, and provided a semiclassical expressic}ﬁoqucgd Ias a S|Ir|nple é)arad@t;m that cr?n _be con\_/rehnlently ex
for their creation. In the decade following his work, little amined classically and guantum mec anicgllgl. The pe-
concrete application or exploration of his ideas have takeﬁ'Od'C orbits, their actions, stabilities, etc., and long stretches

place. One difficulty is that, although he gave a semiclassica(?f the_ quantum spe_ctrum can be accurately Compl.’ted' The
coupling of the oscillators is tuned across the entire near-

theory, his main result is the derivation of an integral, which. ; bl ime 10 impl tthe int i .

is generally not easily evaluated. He suggested an appro i eglrla tereg|me otlmpfem%nb te In ert%o ating ;axpressuans.

mation scheme that is rather restrictive and does not give xcelient agreement IS found petween the quantum mechan-
Ics and semiclassical theory. We also note some interesting

full interpolation between the Berry-Tabor and Gutzwiller - A
limits. features arising from the emergence of a resonance within a

In this paper, we give a full description of our work '€SOnance as a system parameter is varied.
briefly reported in a Lettef11]. Our main goals here are to
derive (for systems with two degrees of freedpm more Il INTEGRABLE AND NEAR-INTEGRABLE SYSTEMS
general form fully interpolating the two limits following
Ozorio de Almeida’s approach, loosening the most restric- We begin with some description of our intent in labeling a
tive assumption, to discuss how to relate the parameters alystem as belonging to the near-integrable class and with the
the theory to the properties of the periodic orbits, and tochallenges posed by near-integrable dynamics. A purely
verify the applicability of the generalized approach with aclassical definition of integrability is easily stated, it being
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roughly the existence o constants of the motion in the . 1

dynamics of arN-degree-of-freedom system; the trajectoriesp(E) =Tr{ S(E—"H(p,q))} = — ;Imj dgG(q,q;E). (2.3

wind around orlN-tori in phase space. Starting with the im-

age of a weak, generic perturbation to some integrable systhe semiclassical approximation then can be used to relate
tem, the KAM theorem states that many irrational tori sur-the quanturmp(E) to properties of the underlying classical
vive the perturbation in some distorted fashion, whereas thgystem.p(E) decomposes into an average and a fluctuating

rational tori are destroyed and replaced by resonances. W&mponenip(E) = p(E) + p4(E), respectively, where
might therefore be tempted to define a purely classical crite-

rion for determining near integrability as being those systems _ 1

whose phase space measure of surviving tori compared to the p(E)= mj dp dgo(E—H(p,q)) (2.4
measure of the full energy surface of interest remains close

to one. However, our principal interest here is in semiclassi- 1 1

cal trace formulas whereifa plays a critical role. The clas- pa(E)=— ;Im[ WI dq>, |Dy*?
sical dynamics most relevant to the quantum mechanics oc- 7 !

curs within a Heisenberg time; determined with the iS(q,q;E) . =

energy-time uncertainty relation; the energy scale is just r{T—lntE)], (2.5
given by the mean level spacing in the spectral region of

interest. We therefore really have in mind more of an
f-dependent notion of what “near-integrable” means. Spe-
cifically, we will have to deal with the creation of resonances
and some further complicatiorisee the resulisbut under-
standing the dynamics up tg, does not include having to ~
deal with chaos explicitly nor the interface between chaotic [a=(91.02, - - - On-1)]- (2.6

and regular p_hase space domains. These problems are inhg;o equation fop(E) expresses the notion that a quantum
ent to the mixed phase space regime and are beyond t'%‘?ate occupies a cell in “phase space” of volumenfd™.

scope of this work. In other words, it (¢) are action-angl_e Other tharp(E)~O(% V), it is of no further interest in this

variables for an unperturbed two degrge—of-freedom 'me'paper. The sum ipg(E) runs over all classical trajectories

grable system, then up tg,, the full Hamiltonian t starting atq and returning tay at energy E S; is the action

H(l,0)=Hq(1) + eH(l,¢) (2.1) _fp dq along the tr_ajectory f?md;t i; a topological pha§e

index counting conjugate points. Finall, is the determi-

is essentially identical to the integrable dynamics generateiant involving second derivatives of the action evaluated at

by averaging over the fast angle variable q”=fq’[;§)(see Sec. 2 of1] and also the discussion in Sec.
Il o .

B € [2m Gutzwiller evaluated this integral with the method of sta-
H(l@1)=Ho(l)+ ﬁfo deoH(l.¢), (2.2 tionary phase finding]
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which retains the resonances but eliminates any chaos. (E)= iz T cod >0 2.7
The most obvious complications introduced by a pertur- Pi mh“F r|Det(M —l)|132 h 2)

bation are apparent in Fig. 1, where the surface of section of
an integrable system is pictured next to the same surface fdrhe stationary phase condition restricts the trajectory sum to
the system with an added perturbation. At the center, there igeriodic orbitsP. S, T, M, and o are the orbit's action,

an isolated periodic orbit with other isolated periodic orbitsperiod, monodromy matrix, and Maslov index, respectively.
around it too closely intertwined to be treated independentlyr is the number of retracings for a given primitive orbit. The
Farther from the center lies our main concern, the multipleassumption that the orbits are isolated generates the forms
resonances that are too narrow to treat with a simple linearfor the amplitude.

ization as leads to the Gutzwiller amplitudes, but far enough

from the central orbit to be dealt with independently. The B. Berry-Tabor amplitudes

problem of multiple, simultaneous resonances was also

briefly discussed ifi12]. For nonisolated stable periodic orbifise., rational torj,

we follow the second derivation of Berry and Takl&(b)]
except that we start from the energy-dependent Green'’s func-
tion instead of the propagator and restrict ourselves to
We give a brief background on the work of Gutzwiller N=2 systems. Assuming now that the Hamiltonian is clas-
[1], Berry and Tabof3], and Ozorio de Almeidd410] to  sically integrable, it can be expressed in action-angle vari-
remind the reader of the current status of the subject and alsables (,¢) (¢1,¢,€[0,277]) asH(l). For a given torus we
to fix our notation for the rest of the paper. Consider a sysnote w;=4dH/dl; (i=1,2), the corresponding angular fre-
tem governed by a Hamiltonian whose quantum form is dequencies, andr=w,/w,, the rotation number of the torus.
noted(p,q) and whose classical form is denotedp;t). The actions [;,I,) are constants of motion since
The density of statep(E) at energyE is expressible in |;=dH/dp;=0. Periodic orbits are associated with tori such
terms of the energy-dependent Green's functionthat the rotation number is rational, i.ex=pu,/u,, where
G(9",9"E)=(q"[(E—H) q'): w1 and u, are coprime integers. They can be labeled by the

A. Background
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two integersM=(M;,M,)=(ruy,l ), Where (uq,u,) 1][a6}) |12
34/,
1

(2.13

specifies the primitive periodic orbit andis the number of |Dm(9)|l/2=w—
repetitions.M; (i=1,2) is thus the number of windings of 2
¢; in a complete round-trip on the orbit fepetitions of the
primitive).

Focusing now on the contribution to the fluctuating part
of the density of stateg,, of the orbitM,

The main point is that the evolutiord{,J;)—(67,J;) (here
with J;=J,) is a Poincaremapping between tw®,= const
Poincaresections.E, 6,, and ¢, are constant. Using rela-
tions implied by Eq(2.11)

P1=20 P (2.8 01(31,00) =01+ 2mr p5(a—pylpp) (214

and

1 dq /
E)=—R f D2 96, da
pM( ) h % \/m| M| ﬁl 22’7Tl',ug ﬁ_Jl . (215)
0, E
iSy(q,q) i
ex;{ M;q v_ 77;"”) ] . (2.9  We introducege (see Sec. IV of15]), the function describ-

ing the energy surfack. It is such that fod ,=gg(l,), the

_ ) _ energy is fixed so that (1,1 ,=gg(l,))=E. Differentiating
Denotingly the actions of the corresponding torus, the achoth sides of this last equality yieldye /dl; = — @, giving
tion Sff,, along the orbit is given bynote the 2r factor be-

tweenS and| da da d?ge
) (E) =M2(m) =T Mg (2.19
E E 1

Su= % orvitP - A= 4; oitl - de=2mly-M.  (2.10 Dwu( ) is therefore inversely proportional to the curvature of
the line H(I{,1,)=E and is, as expected, independent of
As always, it is the prefactor that remains to be evaluatedf. TheM torus contribution reduces to
This, however, can be derived in a straightforward manner if
one uses a system of coordinates for which one direction i% (E)= iR 1 1
taken along the orbitL,16]. These coordinates are given ex- " ahi | ik |27 p3ge|M?
plicity by the standard canonical transformation

(I,e)—(J,0) generated byF,(J,¢)=(r201— 11¢2)I1 2m iSw imwm| [2muad6,
+ @ody: X 0 dﬁlex T_ 2 jo w_2 . (219
01= o1~ 1142, J1=11/us, The integral overd, is the single traversal period@,, /r of
6,=¢,, Jo=l,+(my/po)l,, (2.1  the periodic orbit, which on a torus is independentégf

Later we shall need to be more careful evaluating the
for which, on the torusl, 6, is constant along a trajectory. integral. This is automatically taken care of by rewriting Eq.
Onl,,, 6, thus specifies the particular trajectory afgthe  (2.17 as a partial derivative with respect to energy
position on the trajectory. Recall that for the transformation 1 e{ 1 1

Eqg. (2.11) to be one to oned, should be taken in the range ou(E)=—R s
[0,27 ] rather thar[ 0,27]. With r repetitions, the trajec- wh 2iwh [2mM g

tory launched at= (64, 6,) is such that the final position

0’ is (8},605)=(01,0,+ 27 uy). N L iSu_inum
In these coordinates the acti@®, is unchanged, being o M h 2

canonically invariant. Moreover, when performing the

change of variablesq,q,)—(64,6,) in the integral Eq. 1 R 1 1

(2.9 (the action variables are fixed kg), it can be seen that h 2iah |27M gg/é|1/2

the determinanD,, transforms as a density, i.e.,

i dEJo h 2 ]’

whereDy(0) is defined by Eq(2.6) but in the {,0) coor- (2.18
dinates. This property basically justifies working from the ) )
beginning in action-angle coordinatéas done, for instance, Where the second form follows using the relation
in [3(b)] or in [10]), although the exact quantum Green's T=0S/JE. On a to.rus. the integral _ove?l gives a factor
function is only defined in the original variables. Because 27 Thus the contribution of the orbits of topology for an
the justification of this point involves some subtleties, weintegrable system is
shall discuss it in more details in Appigdi)x I T, SEA -

Using the right-hand side form of E.6), the prefactor B 008 — — ———— —|. (2.
can be g;J)ut in t?le form P TR VE |9E|1/2COS( h 2 4) 219

h oo (2= iSy  inpum
Dm(9)dg:dg,=Dy(6)d6,d6,, (212 X—=—=| doexg———
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The Maslov indexn,, of the semiclassical Green’s function  Ozorio de Almeida suggested writingS(6,) in term of
is expressed in terms of the Maslov indices (v,) of the its Fourier series
paths on which the actions variables are define(sas Ap-
pendix ) >
8S= >, AS,codnb;— xn). (2.24
= (M1v1+Mav,) —0O(gg), (2.20 n=0

where0 is the Heaviside step function. For two-dimensional The benefit is that the coefficiendsS, usually decay rapidly
systems Eq(2.19 is equivalent to the expression given by as a function ofi. A natural simplifying ansatz would there-

Berry and Tabor i 3]. fore be that only the first harmonic of the above expansion
has to be taken into account. The constantO term can be
C. The nearly integrable regime included in the unperturbed motion. Setting the origin of

Following Ozorio de Almeida, we begin with a Hamil- 01 atx,, &S reduces to

tonianH close to integrability written in the form
grabiity 5S=AScos 6,). (2.29

H(1,@)=H%(1)+eH(l,¢), (2.21
In that case the integral Eq2.23 is the Bessel function

where the perturbatior?{ is “small” (in a sense to be J (AS/%) and the contributiomy, to be used in Eq2.9) is
specified latex We shall here investigate how the contribu- [10]

tion py of the periodic orbits of “topology”
M=(M_1,M2) to the density of states is modified by the pM=P,\B/|TJo(AS/ﬁ). (2.26
perturbing term.

For a sufficiently small perturbation, the changepjp of
Eqg. (2.9 is essentially due to the modification of the phase,
since the action is multiplied by the large factofi Hnd the (2.19.
variation of the determinari2,, gives a higher-order correc-
tion. Therefore, in the evaluation of the integral, one should ll. RESONANCES: GENERALIZATION
keep the(unperturbeg zeroth-order approximation fdp, AND IMPLEMENTATION
and look for the first correction of the action. Indeed, since
(I4,1,) are no longer constants of the motid®y, is not

given by Eq(2.10, but a position-dependent terd$(q) has applicability of the uniform approximation in E¢R.26). Ge-

0
° lé?aigidc?ﬂ? [t:)fr'\%u.rbation theory tells us that the first-ordernencally’ beca}Jse of the PomcaBﬁkhoff theorem, only
correction to the action is given by the integFal] two orbits survive the destruction of the resonant torus: one
stables and one unstable. We suppose that the actions
S; andS,, and the monodromy matricéd, andM , of these
6S(q)=—¢€ § Hdt (2.22 two orbits are known or can be computed. We shall see

below that if Eq.(2.25 holds,

where the Berry-Tabor contributiopy| is given by Eq.

It turns out that postulating the form E@.25 of the
perturbative action generates rather strong restrictions on the

taken on theunperturbed trajectorystarting and ending at
. Thus S depends on the unperturbed trajectory on which DetMs—1) +DettM,—1)=0. 3.1
g lies, but not on the position along the trajectofyhis
property, though not surprising, is, nevertheless, not com€onsider that Det{l,— 1) is confined to the intervdl0,4]
pletely obvious since the perturbed trajectories starting anend Det(M,— 1) to the interval[ —«,0]. Almost all of the
ending at a given point usually differ when one is moving possible range of Delf ,— 1) is beyond the simplifying an-
along an unperturbed trajectoryn terms of the coordinates satz behind Eq(2.25. Generically, under increasing pertur-
(J,0) defined by Eq(2.11), this means thadS depends only  bation Eq.(3.1), and thus Eq(2.25 as well, quickly fails to
on #,, but not oné,. hold. This is confirmed later in Sec. IV for coupled quartic
From Eq.(2.17), Ozorio de Almeida found that the effect oscillators.
of the perturbation is merely to replace the A second concern is that in practice, especially if one is
cosS\’,,/ﬁ—nM 72— wl4) by RQRexp’(%/ﬁ—nMwlz considering a resonance inside a KAM island of a mixed
—a/4)] in the expression Eq2.19 of p,?,,T, where system, the unperturbed Hamiltonibif expressed in action-
angle variables anefl{ are unknown. A method is needed to
1 i evaluate the different parameters entering the formulas of
R= ﬂf df1expi 6S(61)/%]. (223 Egs. (2.19 and (2.26, including the generalization given
ahead, without having to refer to action-angle coordinate sys-
The multiplicative factorR takes into account the small tems. The most important parameters are the curvagbief
dephasing between different closed orbits in configuratiorihe lineH(1,,l,)=E and the amplitud& S of the correction
space of topology due to the fact that the resonant torusto the action. In addition, a criterion is needed to indicate
on which they exist is slightly broken by the perturbation. under what circumstances the theory will apply. It happens
Thus an orbit of topolog\ closed in configuration space is that all this information is encoded in the characteristics of
generally no longer periodic. the perturbed, isolated periodic orbits.
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A. Pendulum mapping Gutzwiller trace formula(see Sec. 4 ofl] or Sec. IV B of
Instead of truncating the series as in E2.25, we map 16} for N=2 systems, we give a short derivation in Appen-
the problem onto the pendulum. Let dix I1). The result is
- 2
Su(61)=Sw(e)+AS(e)cog £), (32 d*Sw(6,) _ DetM—1) 39
des (961131)4," ‘

where 9, =f(¢) and
where 01(64,J,) is the Poincaremap whose zeroth-order

— 1 (e (unperturbedl approximation is given by Eq2.14).
Su(e)= 27 )0 d¢S(6y). (3.3 Using the chain rule,

This is possible sinc&y(6,) has but a single maximum and d*Su(6;) d¢\? d%
minimum occurring each interval on2 In principle, all the de? —AS(e) cos{&)(d—el +Sm(§)d_9§
angular complexity of the functio®y(6,) has been trans- 5

ferred to the parametric relationshify=f(¢). The advan- —TAS E 3.9
tage here is tha S(e)cosg) is the action variation of the =+AS(e) do, (3.9

standard pendulum from Ed2.22. The relationship be-

tween the variableg; and ¢ is smooth and nearly linear.  where— is for the unstable orbit antt is for the stable orbit.
Becaused Sy (6,)/d6,=J3;—J, (both initial 6, and final  Two relations for the stability determinants of the periodic

6;= 0, angles are variedthe periodic orbits correspond to orbits follow now from Egs(3.8), (2.19, and(2.16);

extremal actions. Thué=0 or 7 for the stable and unstable 3,

periodic orbits. Choosing the unstable orbit as the origin of 27T upgeAS(e)

¢, the amplitudeA S(e) is related to the actions of the peri- DetM,~1)=- [1—a(e)cosp]?’ (3.103
odic orbits by
2t u3geAS(e)
- DetM—1)=+ ——————>. 3.10

AS(e)= ¥ (3.4) (Ms—1) [1+a(e)cosp]? ( b

_ There are two ways to view these equations. Fgbtcan be

and the average actidg, by independently evaluated; one method is describefil5j.
There are then two equations, but only one unknown:
= Sty 3 A(e)=a(e)cosp. The consistency of the two equations is a

Sw(e)= 2 (35 measure of the validity of the approximation in Eg.6).

The second viewpoint is just to assume that the system is in
To complete the derivation of a uniform approximation the near-integrable regime and the approximation is valid.
for py , we need to specify the mapping 6f onto £. Asa  Generally, the independent evaluation gif can be rather
function of either variable, the action is periodic om 2n- laborious and time consuming. Instead, one can use the equa-
tervals. The difference between the variables is therefore peions to solve simply and quickly for bothg anda(e). In
riodic as well. Keeping only the longest-wavelength oscilla-this way, every quantity necessary for our theory is given by
tion in a Fourier decomposition of the difference, we properties of the periodic orbits alone. Then so longgss
approximate approximately constant and equal to the value obtained as
_ €—0, the mapping is a valid approximation. We shall follow
O1~¢—a(e)sin(é+ ). (3.6 the second route, although for the calculations of Sec. IV we
perform an additional analytical computationg}f that veri-
fies that, a—0, the two determinations are identical.
Taking the ratio of the two cases and doing some algebra
fixes the value ofi(e€) to be

This approximation is quite different from truncating Eg.
(2.24) after then=1 term. In fact, it is possible to invert Eq.
(3.6) as a Taylor series in the “small” parametafe) as

- a(e)" — k—1
§=n§O Ca(0) — 3.7 a(e)=a(e)cosp=—, (3.1
wherec, () can be found recursively. Inserting this expres-where
sion into the cosine argument of E(B.2) and expanding
appropriately(and tediously would generate an infinite se- [ DetMy—1)|"? a1
ries of the form of Eq.2.24 with some decreasing set of =\~ DetM,—1) (312

AS, asn—« depending on the value af(e).

In the same way the actions of the stable and unstabl®zorio de Almeida’s results are recovered in cases where
orbits determine the amplitudaS(e), their stability, i.e., «—1, i.e., under the condition that E3.1) holds.gg fol-
their monodromy matriceM, is related to the second de- lows trivially from either of Eqs(3.10.
rivative of the actiond®Sy,(6;)/d#>. More precisely, one The integral of Eq(2.18 can now be evaluated straight-
can apply a general identity used in the derivation of theforwardly using the integral
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2 iAS(e) 1 1 — -
fo dé,ex 7 cog §) pM(E)%% 2nMIgIAS o) 2 (T—AT)[1+a(e)]
2m iAS(e) S—AS 7\ — _
= . dé[1—a(e)cog &+ @) ]ex 7 cog €) X Co 7 —(n+ yS)E +(T+AT)[1-a(e)]
] [(AS@) o (ASe a1 S+AS ™
=2m Jo| —— | —iA(e) 3| —— | |. (3.13 xcog ———(nt w5
1 [ Te E( 'n')
i ——\ T 1eC08 5+ — Os
Note that the above expression depends onlfg(@s) and not whi | r|Det(M¢—1)[** Y
ona(e) and cog independently. It is thus entirely specified T
by S,, Ss and«. Denotings.,=AS(€)/#, the final result for + —“lmcos(i_%Z) ] (3.16
the contribution to the density of states is r/Det(M,—1)] h 2

where S, Tg and S, T, are the actions and periods of the
full orbits (i.e., not the primitives y,=0(AS)=0(gg) and

pm(E)= —73 3771 13 - 1,2Re{ f.i—iexp( 1Su(e) ys'=®(—AS)=®(—g'é) (@ is the Heaviside step functi@n
w|h°M 30| i JE h arise because of the 4gnj in Eq. (3.195 and we define
igum i ~
— 5 7| [e(s)—iE(€)3u(s))] o=t =Mt Mory), (3178
.t ex iSM(e)_M_i_Tr) o=+ ys=(M1r1+Myvy) —sgrige]l. (3.17D
w|h3M3gp| Y2 h 2 4
_ Noting that the Maslov index in Eq. (2.7) is, by definition
X[ T[Jo(s) —ia(€)I1(s0)] [1], equal toy+O[ —d?S/d6?] and thatd®S/dé? is here
given by Eq.(3.9), Eqg. (3.16 is seen to be precisely the
iF(e) contribution of the stable and unstable orbit to the Gutzwiller
+iAT| J4(s.) + T[Jo(se)—.]z(se)] } trace formula.

Here a remark is in order. The term proportional\td in
(3.149 Eq. (3.16 arises because in E¢.14) the 6, dependence of
not only §S, but alsoT,,, has been taken into account. We
began by saying that the perturbation of the determinant
wherelJy(z), J1(z), andJ,(z) are the standard Bessel func- prefactor can be neglected, so it would seem reasonable to
tions. The average periobi=(T¢+T,)/2 is half the sum of neglect the variation of as well. In addition, Eq(3.10 has
the two periodic orbits periods and the difference ise€ssentially been derived for the unperturbed system. How-

AT=(T,—TJ)/2, consistent with the corresponding notation €ver, the combined result of accounting for the period varia-
for the actions. tion and using Eq(3.10 to determineg”(E) is that the

Gutzwiller amplitude is recoveredxactly for large AS/%.
Thus, our expressions being correct to the extent that the
B. Limiting cases Gutzwiller trace formula is valid for largaS/7, it will be
seen to hold even for very large classical perturbations in
The limiting cases of the Berry-Tabor result and thespite of a derivation whose starting point is first-order clas-
Gutzwiller results are easily recovered. The former is ob-sical perturbation theory.
tained trivially as AS(e)—0 (likewise AT—0) since

§M(e)—>s,(\’,| and the Bessel function expression in parenthe- C. Discrete symmetries
ses reduces to unity. The other limit follows using the as-

ymptotic expression for Bessel functions of large argumentsg The theory given so far for a generic perturbation must be

lightly modified if the system possesses discrete symmetries
including the perturbation terms. Instead of a single stable
and a single unstable orbit created as the rational torus is
3.(2)— /icoz< z—nz—sgr[z]z 7 real destroyed and replaced by a resonance, it is possible that
n Tz 2 4)’ ' multiple orbits survive, which together build up the full reso-
(3.195 nance structure. Ldtdenote the number of surviving stable
(or unstable, it is the samerbits. The value of depends on
the discrete symmetry and the torus. Each of thetable
(unstable orbits will map onto any of the other similarly
Then, after some algebra and the application of BdLO), created stabléunstablg periodic orbits through the applica-
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tion of one of the operators of the discrete symmetry group.

There are thus multiple copies of identical pendulum struc- R(SE)=2> R{(SE),

tures in the resonance. Crudely speaking, each periodic orbit )

is | times too short to explore the full resonance. In other o

words, 6 and ¢ are not periodic on the same angular inter- RJ(S,E)=J dtt™ Y%~ (@71 (t,E). (3.21)
vals. As¢ covers[0,27], 6 only covers] 0,27/1]. Equation 0

(3.6) must be replaced by The actual expression fd®;(S,E) now depends on the

16,~&—a(e)sin(é+ ). (3.19  orbitand whether it belongs to a resonance as covered by Eq.
(3.14) or one of the diffraction integrals discussed elsewhere
With a little simple algebra, it can be seen thgE) retains  [13]- For. resonances one  obtains[introducing
its same definition as given in E@.11), but that the pro- Pj(E)=a—i(S—5))]
portionality of the curvaturgyg to the DetfM —1) is modi-

: ) | .
fied by a factod? to become R(S E):f dtte (eIt
L M3 2
271 2u3grAS(e) . .
DettM,—1)=— 2%€ -, (3.193 . liex is—.t_'”“"”_'_”
[1-a(e)] ti JE j 2 4
27112 u3gEAS(€) - _
DetfM—1)= + —— F2IEZAXE 5 10y X[Jo(AS|t) —i&(€)I1(AS}H)]
[1+3(e)]?

B iexpli pym/2+iwld) o
All the rest of the semiclassical treatment follows without a 27T|M§g’,§|1’2 9E
further modification.

1+[iE(e)/ASj](\/pJZJrASJZ— pj)
D. Inverse# spectrosco X 2 2 :
p py Vo +AS;

Because many oscillating terms contribute to the total (3.22
density of states, it is difficult to verify the role of specific ‘
o_rbits directly in the spectrum. As has been pre\{iously conin evaluating the integral, the R restriction may be re-
sidered[18], the spectrum can be transformed in order toplaced by 1/2 of the complex conjugate expression since for
venient scheme begins with the simple observation that ifquation(3.22 is the functional dependence that we expect
Eq. (3.14 and in the diffraction integrals that arise, classical esgnances to show in the similarly transformed exact quan-

actions appear divided bfy. With t denoting/ ™%, the vari-  tym spectrum. The final expression after carrying out the
ables of actionS and the inverse Planck constantan be derivative (note dp; / aE=iT_j) is

taken as a Fourier transform pair with the transform kernel
k(t)=e"S‘. Instead, it is useful to introduce some minor expli pyml2+iml4)
modifications. First, we add an exponential damping to the Rj(S,E)= 27| M3g 72
kernel because later we will not have access to an infinite TV 20e
range oft (i.e., we will have only a finite stretch of the
spectrun). Second, adding a factor ¥ turns out to generate

. . (p_2+ AS—2)3/2
compact analytic forms as a function 8ffor the complete ! !
periodic orbit expressions. The form we use is equivalent to A( €)AT, P,
Gaussian damping, but in the variabt€. Other choices are AS - (pj2+Asz)1’2”' (3.23

possible, but this version is quite convenient.
f The defnsnydoEf sltatei must SOW ge ﬁon3|derﬁd both as For completeness, we also give the expression deriving from
unction oft andE. In other words, a# changes the energy . Gy tzwiller trace formula

levels move, forming continuous curves when drawn in the

(t,E) plane. The energy curves will intersect a fixed energy Texplioym/2)
value only at special or “quantized” values ¢f It is the Ri(S,E)= TN el 3
transformation of this t spectrum” that allows a precise ar[mDet(My— D" a—i(S-Sy)]
view of the effects of the individual orbits. We therefore Tsexpiogm/2)
consider the action function + 4r[mDetMo—1)| " a—i(S— Sy 72
s} 0 R 3.2
R(S,E)zf dtk(t)p(t,E)zf dt t~ e~ (e®t,(t E). (3.24
0 0
(3.20 and the Berry-Tabor result
T exp(i pym/2+iml4
Expressing the density of states as a sum over periodic Ru(S,E)= M EXR 730 7 mi4) (3.25

orbit contributions, each labeled By gives 2m|M3gE Y a—i(S—Sy)]?
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IV. COUPLED QUARTIC OSCILLATORS For the periodl and actionS of some period orbit, Eq4.2)
Any of a number of systems, such as the diamagnetkI:eads o
hydrogen atom in certain field regimes, are suitable for veri- TE=5 170, SE=,330, (4.9

fying the theory of the preceding section. We have studied

two coupled quartic oscillators in depth previously becausaJsing the relatior’S/9E=T and Eq.(4.3), S’=4E°T9/3.

of its transition from integrable to chaotic motion as the cou- |n Sec. lIl, our goal had been to express quantal properties
pling increases. The most detailed information can be foundf a system in terms of classical quantities such as the action
in Ref. [15], where numerical techniques enabling us to cal-and monodromy matrix of periodic orbits. This is of practical
culate tens of thousands of quantum levels to high precisiointerest because, especially in the nearly integrable regime,
are described. This will make it possible to resolve variougshere exist efficient methods to compute numerically these
orbit contributions with a very sharp precision. Previousquantities even when it is not possible to obtain them ana-
work by several groups has been published on the quartigtically. The approach used here is the one suggested by
oscillator’s periodic orbit theoryf19-21. However, these Barangeret al. [22], which consists in starting from known
works focus on the strongly chaotic coupling regime,orbits and following them by continuity as a parameter is
whereas our interest here lies in the near-integrable and ultizaried. We have in fact essentially implemented their algo-
mately mixed phase space regimes. rithm to which we refer the reader for a detailed description.
We stress though that this algorithm allows for a simulta-
neous computation of both the periodic orbits and their as-
sociated monodromy matrix. The main difference here is
Let us first recall the salient features of the dynamiCS. Thqhat, instead of Varying the energy as was done by Baranger

A. Classical oscillators

guartic oscillator's Hamiltonian can be written as et al, it is kept fixed(and equal t&E,= 1) and the parameter
2, 2 varied is the coupling. between the two oscillators.
- P1T P2 As a starting point, we use the periodic orbits of the inte-
H(N) +V(d1,92), . : .
2 grable systemx =0 for which the motion of the two oscilla-

tors is decoupled and governed, respectively, by the one-

4 dimensional Hamiltonians

a: 4 2.2
V(d;,0z2)=a(N\)| -~ +bas+2Nq705 |, (4.1)
Lt b TR H,=p2/2+(ae/b)as,

wherea()\) is a largely irrelevant constant chosen for tech- H,=p3/2+(a5b)q3 (4.9
nical convenience in making the quantum calculations an(ﬂ _ o

\ is the parameter governing the coupling between the osci ao—a()\—_q)—o.r]154 EOO 436 631']7d' bi fi

lators and is responsible for the variation of the system from Determining the ¢ anging periodic orbits of interest as
integrable £ =0) to chaotic dynamics-{0.6>\> —1.0). A moves away from zero involves two steps. The first one
[The value of the constant is given by consists of determining the resonant tgre., the families of
a(\) = (4m2/9m2k%) K2(1—\/2), where K(2) is a com- periodic orbitg of the A =0 Hamiltonian. This part is rather
plete elliptic integral of the first kind and effectively straightforward since to any rational rotation number

m=fi=1, K(1/2)=1.854074677301372. The range a=puqlu,, whereu, andu, are coprime integers, the reso-

(0.0>A>—0.15) approximately corresponds to the near-nant torus of topology &1, 42) is determined by the condi-

integrable regime where the chaos is narrowly contained antons
far from having a global covering of phase space. Neverthe-

) ) . T
less, we show in Figl a sequence of surfaces of section with o=t 2 (4.5
N\ decreasing towards-0.15 to illustrate the significant pa Ty
changes in the dynamics in the intervak [ —0.15,0.Q.
g y [ g E,+E,=E0=1. (4.6)

One sees that=—0.15 is by no means a “weak” pertur-
bation to the integrable system. But for the reasons describeph
at the beginning of Sec. Il and the results found later, it shall)
still be considered as belonging to the near-integrable re- : :

gime. The parametdr= 7/4 is set differently from one in andE, in the corresponding modes as

such a way that, in addition to time reversal invariance, the 1 \l4

system has the symmetfy,, of the rectangle generated by T,=¢ m) 4.7
the reflectionP; and P, across to the lineg;;=0 and 0r2

g,=0;1=2 in Eq.(3.19 for the resonances pictured in Sec. [with gzr(%)Z/(z\/;)] This readily yields

V. The potentialV(q) is homogeneous inqg,q,) which

e periodsT; and T, of the two one-dimensional quartic
scillators can then be expressed in term of the enefgjes

14
, T=§

aok,

leads to scaling relations in the dynamics. Any trajectory M‘l‘ Mg

E E - " 2
[g=(t),p"(t)] on the energy surfacds can be mapped onto Ei= T p2,8 E,= T 022 (4.8
a trajectony{ g°(t),p°(t)] on the energy surfade’= 1. With K1 K2 AR}

_ 0y1/4
y=(E/E")™, which uniquely specify the resonant torus.
A given resonant torus corresponds to a one-parameter
PE(t) =v?p%(yt), qE(t)=yq°(y). (4.2  family of periodic orbits. As soon as the perturbing coupling
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is turned on, however, the usual scenario, as described by the 250
PoincareBirkhoff theorem, is that all of them are instanta-

neously destroyed, except for two trajectorigsthe absence _ A =0.0
of symmetriey, one stable and one unstable. We shall in the /2> 200
following denote bySuqu,(N) andU wquo(N) these surviv- m,

ing orbits. Of course, we need to locate from where on the V2 150 ¢
torus the surviving orbits originate. In general, this requires E

some further computation. However, for the Hamiltonian in — 100 |

Eq. (4.1) the symmetries of the system simplify the problem.

Considering a given resonant torug,(,x») and working, 50 |

for instance, in aj,=0 Poincaresection, the surviving peri-

odic orbits for infinitesimal, but nonzero, coupling are the 0 h

extrema of the actiodS(q,,p;) = — ¢ oVdt, wheresV(q) is
the perturbing potential, and the integral is taken along the A=-015
unperturbed orbit starting and ending &t (p,). In spite of 200
the notation usedg; and p; are not independent variables
since (@,,p,) is constrained to be on the intersection of the 150

resonant torus with the Poincasection. It can be seen that,

because of the symmetriedS is necessarily an even func- 100 |

tion of both q; and p;. ThereforeSS has to be extremal

whenever eitheq, or p, is equal to zero. It then suffices to 50l

check that the extrema on tlhig axis do not correspond to

the same periodic orbit as the one on theaxis to ensure o M . .
10 20 30

that bothUu,u, and Su,u, have been found. The rare 0 50

orbits for which this is not true have to be treated separately. S

This consideration, together with E@t.8), entirely specifies

the original orbits, Whlch we are going to follow frF’m FIG. 2. Quantum action functiolR(S,E=1)| for two different

A=0.0tox = —0.15 covering the full near-integrable regime ., yjings: the integrable case=0.00 and the large perturbation

of coupling. limit of the near-integrable regime to nearly the mixed phase space
regimex=—0.15.

IR(S,E)I

B. Quantum oscillators
amplitude; much longer level sequences are easily generated,

The Schrdinger equation and scaling relations are sum ; .
g q 9 but are unnecessary here. To compare with the theoretical

marized as expectations, the quantum spectrum must be transformed ac-
12 52 52 R cording to Eq.(3.20. Using
=—— + +
EV(q) 2m(£§ qu)‘lf(q) av(q)¥(q), .
o _ p(tE)=2 SE-Eq(1) (4.12
El=al%E? Wi @)=Vl ). (49

and noting that Eqg. (4.10 is equivalent to

A nice simplification of using this homogeneous potential |sEn(t): E.(A=1)t"%3 it is straightforward to show that

the relation between the energy eigenval{Eg} found at
fixed & and thet eigenvalueg#,} found at fixed energy 3
E. For our choice of constara(\), the following exact R(SE=1)=> > [En(h=1)]¥8 (a+ISIEn=11"
relation holds for alh andn=1,2,3, .. o°: 411

(4.13
En 3/4 % tn . . .
(_) —— =" (4.10  Which is to be compared with Eqe3.21) and(3.22, evalu-
E fin t ated with the classical actions and stabilities.
The Hamiltonian(4.1) is invariant under reflections about V. RESULTS
theq, andq, axes and under time reversal with the symme-
tries of the eigenstates classified as Before verifying the theory, we first illustrate in Fig. 2 the
spectrum of peaks produced by the invetisgansformation
P,V (q)=mV(q), (4.11 of the quantum spectrum. The two spectra shown cover op-
posite limiting frontiers of the near-integrable regime,
wherem;=*+1. namely,A=0.0 and\=—0.15. Note the general features

For the entire near-integrable regime {—0.15,0.0, we  one can expect. First, some of the peaks have begun or ap-
calculate the level curves for the first 12 000 levels. This ispear to have split. Next, the positions of the peaks shift very
sufficient for the purpose of isolating a resonance and showlittle. Finally, there is a significant rearrangement of some of
ing its contribution to the density of states making a full the magnitudes of the peaks even though both curves belong
transition from the Berry-Tabor amplitude to the Gutzwiller to the same near-integrable regime. Furthermore, even
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found for tori with smaller actions. In particular, the

= 200} M=(1,1) torus contribution shown expanded in Fig. 3 is
M sol good to about 1% of the magnitude in the peak region with
C/f the phase error not worse than about 2°. This sets the gen-
~ 100} eral scale for the quality of results we would like to see
g across the near-integrable regime for the comparison of the
50t theory for resonances presented here.
On closer inspection, it can be seen that some degradation
0 : ; S
shows up in the tails and some peaks for tori with larger
].8. actions. As a general rule, semiclassical approximations have
a tendency to break down at longer propagation times. More-
over, it can be seen from the definition E§.20 that con-
200 A =00 | tributions of a resonance ®(S,E) is dominated by different
= part of the spectrum depending on whether the central peak
L 150} 1 or the tail is considered. Indeed, f&=S the integral Eq.
7] (3.20 is dominated by (i.e.,# 1) of the ordera~ 1. There-
EZ 100 | 1 fore if @ can be chosen small enough, this corresponds to
= guantum levels well within the semiclassical regime. On the
50| contrary, the tails are dominated by contributions fromif
m the order 6— SJ-)*l independently of how small becomes.
0 \ \ A ) Thus the tails are dominated more by the lower levels in the
) |‘ ” || ’ | || 1 spectrum and it is natural for errors in the semiclassical ap-
5 10 15 20 25 30 proximation to appear there first. An additional effect for
S larger values of the action is the increased density of periodic

trajectories. Several poorly reproduced tails may overlap and
FIG. 3. Comparison of the quantum action function and thelead to cumulative errors. Nevertheless, the Berry-Tabor
semiclassical theory for integrable systems=(0). The solid curve  theory works beautifully for the quartic oscillators in our
is the quantum results and the dashed curve the Berry-Tabor foenergy regime.
mula. The short vertical lines below mark the actions of the classi-
cal tori. TheM =(1,1) peak is shown expanded as an inset to show

! B. Near-integrable regime
the quality of agreement better. Note tii&t 1.

In surveying the quantum results, we found the following

though the Berry-Tabor amplitudes are larger than thé)rOpgrties. T.he're were no peaks. app('aarin'g unrglated to some
Gutzwiller amplitudes byt ~2 and one might have expected classical orbit, i.e., no ghost orbif&3] in thl_s regime. Sev-

the amplitudes to decrease, the perturbation of the systeff@! Of the peaks that appeared to be splitting under pertur-
forms several new peaks as large as or larger than the Berrg-at'on were just the consequence of two quite distinct tori

Tabor magnitudes. The new large peaks existNoralues ~Pedinning nearly degenerate in action and moving apart.
quite far from integrability. Many magnitudes were left almost unchanged, yet others

were greatly affected. One can also find examples of con-
structive interference where amplitudes increased as orbits
A. Integrable systems crossed paths. It happened that very few resonances in our

We begin with the Berry-Tabor formula, which has ex- Present calculatiofjust 12 000 levels per value of) could
isted for about 20 years. Its precision in predicting magni-2€ followed from the Berry-Tabor well into the Gutzwiller
tudes has sometimes been found to be a little disappointingfgime(two separated contributions to the density of states
[3,14]. This motivated, for instance, the authors [8f to hey are all for tori withM=(k,k) k=1,2,3,.... For the
include complex trajectories to obtain better accuracy. Her@ther resonancea S/ is not sufficiently large to observe
we have long spectral sequences that can be used to she@ak splitting. In addition, although the number of destroyed
some light on this difficulty. Because there is no harmonictori increases with the perturbation, the behavioggfn the
component in the quartic oscillator's potential, neither Berry-neighborhood of the surviving ones is only slightly affected
Tabor nor Gutzwiller amplitudes are applicable to tori hav-€ven for significant couplings. This is seen in Fig. 4 where
ing one of their coprime integers equal to zero as inthe curvegg(l;) atA=—0.10 appears almost on top of its
M= (u,0) orM=(0,u,). It is not of sufficient interest here unperturbed analog wherever both are defined. Derivatives
to derive formulas specific to these special tori and no atof 9e magnify the differences between the perturbed and
tempt is made to include their effects in the comparison tdInperturbed results; neverthelegg,shows only small varia-
the semiclassical theory. With that exception, in Fig. 3 wetion throughout the nearly integrable regime. Note that in the
find excellent agreement, to within a couple of percent oigaps ofge corresponding to resonances, derivatives can only
better, between the Berry-Tabor theory compared to th&e taken through an extrapolation. A purehassicalvalue
quantum results. We conclude that Berry-Tabor theoryof g¢ cannot be defined without ambiguity, but far from
works extremely well, except perhaps too close to thebifurcations (see below the results are always consistent
ground-state region of the spectrum. The best accuracy iwith Egs.(3.10 and(3.11.
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0.0 :
0.0 1.0

I

1

FIG. 4. Comparison of the classically computed function
1,=gg(l1) at A=0.00(thin) and\ = —0.10 (thick). In the coupled
case, the curve is only defined for the tori that have not been de-
stroyed by the perturbation. Despite the strong perturbation, the
curve appears almost unchanged.

The best resonance to begin testing the theory is for
M=(1,1) for several reasons. To begin with, it is isolated
well enough from other orbits to follow unambiguously. Its
stable and unstable orbits are well separated by—0.15;

i.e. its entire transition from the Berry-Tabor to Gutzwiller
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Quantum

200
150
100

IR(S,E)I

200
150
100

IR(S,BE)I

FIG. 6. Comparison of the quantum and semiclassical theory of

limits emerges. Also for this case, the independently calCuge 1= (1,1) resonance as a function of actirand perturbation
lated value ofgg for the integrable casenE0) leads to strengthx. Note thatE=1.

consistency with Eqs(3.10 to better than 5% across the
entire near-integrable regime. This is illustrated in Fig. 5. ,
The value ofgg for A=0 was calculated by explicit con- 9e
struction of the energy surface in the neighborhood o

values neaM = (1,1) for different perturbations were de-

ffived via the relations given in E¢3.10. There is excellent

M=(1,1) and evaluating its curvature analytically. The other2greement between the—0 limit from the derived values
of g¢ and the analytic result, which validates the use of Eq.

(3.10. Finally, the asymmetry of the stable and unstable or-
M= (1,1) bits as measured bg(e) varies smoothly with\ and does
09 —— not exceed 10%. It is interesting to note tldk) does not
! appear to approach zero a3—0. So the ratio
-092 ; —Det(M,—1)/Det(M;—1) does not approach 1 even for
g " - ) 1 infinitesimal classical perturbations to the integrable system;
E 094 «.-- analyticvalue 1 recall Eq.(2.25 deriving from Ozorio de Almeida’s ansatz.
20.96 Of course, the asymmetric term in E®.14) must vanish as
A—0, but this is attained becaua&, AT—0 and the Bessel
098 | | function J,(0)=0 and not becausa(e)—0. In Fig. 6 we
show a comparison of the semiclassical theory with the
-1

0 -0.04 -0.08 -0.12 -0.16

quantum results using thgt anda(e) values given in Fig. 5
The agreement is excellent, being better than 3% in error in

the domain of the peak for all the values »f see, for ex-

ample, Fig. 7.

If we usea(e)=0 andgg of the integrable systerfOzo-

rio de Almeida’s ansajz the errors in the semiclassical
theory may be significantly larger, depending on the reso-
nance. The benefit of accounting fAiT, a(e), and a vary-

ing g¢ become more pronounced for tihé=(2,2) orbits
whose amplitudes would be poorly reproduced otherwise.
The asymmetry between the stable and unstable orbits is
amplified by the second tracing of thé=(1,1) orbits. This

0.15 L — . is illustrated in Fig. 8. We plotR(S,E)|, but only along the
0 -0.04 -008 -0.12 -0.16 emerging ridges associated with the stable and unstable or-
Py bits as a function of \, ie., |R(S(\),E)] and
IR(S,(N\),E)|. The curves generated by the Ozorio de
FIG. 5. Drawn argy”(l,,) anda(e) as functions of the coupling Almeida ansatz, the Gutzwiller trace formula, and the theory
strength calculated from Eq€3.10 and(3.11) for M=(1,1). presented in this paper are plotted along with the curve gen-
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FIG. 7. Cross section through Fig. 6 for the perturbation cou-
pling parameteh = —0.07.

erated by the quantum spectrum for comparison. As ex-
pected, our theory goes asymptotically to the Gutzwiller ex-
pression for large perturbation. Whereas Gutzwiller’s result
begins at infinity for the integrable system, our result and the
ansatz begin at the Berry-Tabor value. The last two curves
follow each other closely up ta=—0.04 and diverge for

stronger perturbations. Our theory in this case continues to
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follow the quantum spectral results closely.

In general, it is expected that the amplitudes should de-

0  -004 008 _-012 -0.16
A

crease with increasing perturbation since the Gutzwiller am-

plitudes are lower order ifi than the Berry-Tabor ampli-

FIG. 9. Drawn aregg”(l),) anda(e) as functions of the coupling

tudes. In fact, this happens up to a point at which the stablgtrength calculated from Eqé3.10 and( 3.1 for M=(3,3).

orbit branch passes through a minimuits stability deter-
minant passes through a maximum, heje Its amplitude

ceeds the initial Berry-Tabor amplitudes. Consider the

then increases rapidly and, in all the quartic oscillator resultd4 =(3,3) case. Although these orbits are just the third tra-
we checked, it always, at some perturbation strength, exversal of theM =(1,1) orbits, the theory presented here can

M =(2,2)
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FIG. 8. Comparison of the quantufsolid) and semiclassical
(dashedl action functions |R(S,(\))| and |R(S¢(\))| for the

no longer follow the quantum results. A first signal that
something is going wrong is that the behavior gif and
a(e) derived from Eqs(3.10 and(3.11) is much more dra-
matic; see Fig. 9. In principle, although we allow some varia-
tion of g¢ with the perturbation, its value remains associated
(at a given\) to a torus and should not depend on repetition
numbers. Thereforege should be the same for all the
M=(k,k), k=1,2,3. This is actually the case fot=(1,1)
and (2,2). However, as observed in Fig. 9, Kbe= (3,3) this

is true only for small couplings, and as approaches
—0.15, g¢ evolves towards zero, indicating an infinity in the
prefactor of the semiclassical theory aafe) towards— 1
[i.e., —Det(M,—1)/DetM¢—1)—oo].

The difficulty encountered here is actually the same as
that originally pointed out by Gutzwiller in his derivation of
the trace formula, namely, that for elliptic orbit a divergence
appears as De{;—1)—0. This situation corresponds ge-
nerically to a bifurcation of the elliptic orbit and for the
M=(1,1) resonance to the creation of a 2/3 resonance in the
neighborhood of the stable orbit—a resonance within a reso-
nance; see Fig. 10. For lardeS/# [as is the case here for the
M(3,3) resonance near the bifurcafjasur result is strictly
equivalent to the one obtained using the Gutzwiller trace
formula, yielding the usual description: the stable orbit con-
tribution is infinitely stronger than the unstable dne., only
the stable branch is divergingrhe essence of this behavior

M=(22) resonance. The semiclassical predictions from thds reflected in the quantum results; see Fig. 11. The initial
Gutzwiller amplitude, Ozorio de Almeida ansatz, and our work arequantum peak splits asymmetrically and the stable branch

plotted for comparison.

rises above its integrable system value after initially decreas-
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A=-0.17 M=(6,9) resonance falls into this class and one sees abso-
lutely no increase in the amplitude near the bifurcation. It
remains extremely close to the Berry-Tabor amplitude
throughout. The alternative mapping = 6+ asin(6,)
(which, however, does not yield a closed form expression for
pm) may be used to treat the bifurcation fArS/A=1 or
less. It, however, does not provide a sufficiently good de-
scription of the actual bifurcation process to be used at larger
values ofAS/fi.

We make a final related comment on the observation that
several amplitudes appeared to change very little. As pointed
out by Ozorio de Almeid&10], for primitive orbits, as either
TR i s N M1 OF o, increases, the action differencA$ decrease rap-

[ idly. Except for the shortest orbitay S is so small that the
Q4 amplitude remains almost constant and the peak shifts just a
little even for significant perturbation strengths. The theory

FIG. 10. Blowup of the stable island surrounding the stable orbitpresented here is still applicable to these orbits, but just re-
of the primary resonanceM=(1,1) for a coupling strength mains essentially equal to the Berry-Tabor formula and this
A=—0.17, which is slightly stronger than the bifurcation value js porne out with the guantum spectrum. However, even
_)\bif: —0.15. Note that for symmetry reasons, six islands are ViSib|9£houghAS remains close to zero, the stability determinants
instead of three. do not. Indeed, writing DeiMl,—1)=—2sinh¢/2) and
, ) ) L Det(Ms—1)=2sin(B/2), a very rough order of magnitude of
Ing. Of course, there IS no smgulanty n the, q“?“tum mag- and B can be obtained, assuming they are approximately
nitude as in the semiclassical theory, which is bre""k'ngéroportional to the period of the corresponding orbit. The
down. Actually all the tall action peaks emerging at 1argeqefficient of proportionality can then be understood as a
perturbz_atlon can be associated with this kind of Structureying of mean Lyapunov exponent, which increases with the
Interestingly in OUV_“ES‘,J“S' the cqalesc;ences more than Conﬂ)’erturbation. Therefore the determinants of long orbits tend
pensate the reduction in order ®fin going from the Berry-  , mqye away from zero even faster than for the shortest
Tabor to the Gutzwiller limit. One method to properly ac- naringic orbits. In particular, with increasing perturbation,
count(in the largeA S/ regime for the magnitude of these e geterminant of the stable orbit will leave and return to
peak; near the qlassmal bifurcation points would be to follow, . zero, aB— 2w, where the semiclassical theory given
Ozorio de Almeida and Hannay's wofi2] where normal o6 fails hefore the resonance contribution to the density of
forms are given along with some theory. states moves away from the Berry-Tabor regime. For the

It should be kept in mind that resonances with smallaiqrity of the longer periodic orbits, as one increases the
AS/fi cannot be described properly near a bifurcation by oULet rhation strength beyond the near-integrable regime a
method even though the theory is not equivalent there to th.\; treatment will need to be found.

Gutzwiller theory. It happens that E¢3.10bH applied at a

bifurcation[i.e., DetM¢—1)=0 but AS#0] constrainsgg

to be null, which has no particular reason to be the case. This

simply reflects that the mapping E(.6) cannot describe a The theory presented in this paper extends the semiclas-

bifurcation. In fact(we do not give the figure herethe  sical theory of Ozorio de Almeida for near-integrable sys-
tems. We present uniform expressions, fully interpolating the
Berry-Tabor and Gutzwiller amplitudes across the whole

Quantum nearly integrable regime. The functional forms obtained are
expressed explicitly in terms of the canonical invariant prop-

P s T T

™y

% }'}??5%;;
e b 3’1&

Pq

’&WJ.

VI. CONCLUSION

a }Sg erties of the periodic orbits, i.e., action, stability matrix de-
y 30 | ,//\ terminant, phase index, and period. This has made it possible
@/ 60 | N /\V/\%\/é’/ to perform a complete implementation of the theory for a
40 | S “\\vv\q\v\vx&(\ o o} o/ model system and to give a fairly complete discussion of the
Q_{‘ 20 | X \}M@@@% semiclassical theory. The study directs our attention toward
W R some rather interesting classical dynamical effects visible in
0 the quantum system.
0.05 47 20 From a qualitative point of view, the phase space structure
A -0.15 28 28.5 of an integrable system is unstable with respect to generic

S perturbations. It is foliated by tori that serve as geometrical
structures for Einstein-Brillouin-KellefEBK) quantization
FIG. 11. Quantum action function of tié=(3,3) resonance as N the more familiar semiclassical theory. In a trace formula
a function of actionS and perturbation strength, showing the —approach, i.e., Berry-Tabor theory, it is the resonant tori
consequences of the bifurcation of the stable orbit. In a sense it ifN—1 parameter family of periodic orbjtsthat play the
simpler to locate the classical bifurcation with the quantum specdominant role in the theory. As an infinitesimal perturbation
trum than by calculating classical trajectories. Note fhatl. is introduced, these rational tori are replaced by resonances
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organized around two “surviving” periodic orbits, one  As pointed out by Ozorio de AlmeidglO], for the re-
stable and the other unstable. Discrete symmetries may immaining infinity of orbits the situation is different. For them,
crease this number and can be incorporated in the theory @sS/% does not exceed 1 for perturbations strong enough to
well. make DetM;—1)=0. AS for a given perturbation shrinks
First, consider just the shortest periodic orbits; they areaapidly with increase inu,; or u,. In our spectra, even for
associated with the largest resonances. With increasing pexM = (2,3), for example, we found th&tS/% was much less
turbation, their resonance structures grow quickly. At somehan one across the entire near-integrable regime. Not sur-
perturbation strength, the two surviving short orbits becomeprisingly then, its contribution remained, to a high degree of
effectively isolated from one another in their contributions toaccuracy, equal to the Berry-Tabor amplitude throughout.
the density of states. Excluding further orbit bifurcations forThe extended theory remains valid for these orbits up to a
the moment, the stable and unstable orbit contribution@erturbaﬂon sufficiently strong to make DBt(—1)=0 just
should approach the sum of the individual Gutzwiller expres-g with the short orbit class. However, here the theory is not
sions for the amplitudes of isolated orbits. This was borngpat interesting since it predicts correctly an approximate
gut Wi\';h tTme qug\ntumt_spe;:trumt_of ﬂ:ebqﬁart'ic ofscillag)rs inequivalence to the Berry-Tabor amplitude up to the point
ec. V where the entire transitional behavior from Berry- P, ; ;
Tabor to Gutzwiller behavior was observed. The extend)(/a(ivtirlﬁigdltffo?ltsh(: lg(]:ct)ig%halrt]g oes_suggest usnsg and T, SUb_' i
- ) period of the motion on the origi
semiclassical theory followed the quantum results very accus torus. In addition, even the repetitiod = (6,9) behaved

rately. The small residual errors were of the same relative, 1o same way with no change from the Berry-Tabor am-
size as occurring in the Berry-Tabor or Gutzwiller limits. plitude. This is in spite of the fact that its DM(—1)=0

An interesting consequence of the fact that the theory Preiear the large perturbation end of the near-integrable regime.

sented fully interpolates the Berry-Tabor and Gutzwiller Xt it showed no evidence of the bifurcation is natural in
Pressions 1S that 't. works well bey(_)nq wher_e the fwst-orderthe sense that the resonance is so narrow as to be indistin-
classical perturbation theory used in its derivation might beguishable from a torus. so the resonance within the reso-

anticipated to be valid. Instead, it fails where the Gutzwillernance structure appears to play no role. At some point for a

theory does for nonzero perturbations, i.e., in circumstanceét ; ;
. SR A rong enough perturbation though, one would expect this
where the stable orbit's De¥{;—1)—0. Still considering g gh b g P

equivalence to Berry-Tabor to fail for long orbits, but appar-

only the shortest periodic orbits, thi_s occurs for perturbation%nﬂy not by following the same Bessel function interpolation
strong enough to produce globalized chaos well into the,q {5.,nd for the shorter orbits.

mixed phase space regintehich we found very encourag- g noints to one of the key problems remaining to be

ing with respect to beginning to understand those SyStemsgq a4 in order to understand mixed phase space dynamics
To t.)e a little more explicit, f[he short orbit class is markeq bYand the associated trace formulas. It is necessary to extend
having AS/% exceed 1 without the perturbation sending o anproach to the case of a larger number of periodic orbits
Det(Ms—1) through O and for this class our treatment,yithin the resonance. From a technical point of view, we
works extremely well. , __recall the assumption made in our derivation th&tas only
Turning now to the longer orbits, we need to distinguishy,q exirema. Because these extrema correspond to the orbits
two classes, those that are repetitions qf some short orbit anﬂjrviving the perturbation, this assumption is precisely
those that are not. The distinction is important due to0 the,qialent to restricting ourselves to the range of perturba-
behavior ofAS and the eigenvalues &s. For therth rep-  yion weak enough that there is no bifurcation. Extending the
etition of some orbitAS is r times the action difference of 5046 of applicability of the semiclassical theory further to-
the primitive periodic orbit(=1). Likewise, therth repeti-  arg the mixed regime will therefore require relaxing this
tion of Mg has eigenvalues that are théh power of the  consiraint, though still keeping the desire to express all the
primitives, expf-ird). In essence a much smaller perturba-narameters of the theory in terms of the periodic orbits’ ca-
tion will lead to DetM—1)—0 for a repetition, but since nonjcally invariant quantities. Although certainly not a
AS is also increasing proportionally 1 these orbits also  gimple task, this might provide one approach to tackling the

generally attailA S/7>1 without their determinants passing study of semiclassical trace formulas for the mixed phase
through zero. They therefore also belong to the short orbigpace regime.

class. However, for them, the theory breaks down under

smaller perturbations. All thel newly created high peaks

showing up in the perturbeti™ *-transformed spectra were

due to this effect. The stable orbits fist=(3,3), (4,4), and ACKNOWLEDGMENTS

(5,5) emerge from their respective origins at zero perturba- The authors thank Professor O. Bohigas for his support of
tion by separating from the unstable orbit and decreasing ithis work and Martin Sieber for many helpful discussions.
magnitude. Still within the near-integrable regime, they re-Two of us (M.G. and S.T). express their gratitude to the
grow into peaks taller than those that existed even for thd®ivision de Physique Theorique, IPN, Orsay, for hospitality
integrable system. Since D&i—1)—0 indicates an orbit during their respective visits. M.G. acknowledges support
bifurcation from the stable orbit, a new resonance is beingrom the CIES and from the Bulgarian Science Foundation
created within the original resonance. For these cases, theumder Contract No. PH431. S.T. acknowledges support by
were thus very sizable effects in the quantum spectrum. Ozdhe U.S. National Science Foundation Grant No. PHY-
rio de Almeida and Hannay have discussed how to uniforn®421153. The Division de Physique Trgue is “Unite de

the semiclassical theory for such ca$#g], but we did not Recherche des UniversiteParis 11 et Paris 6 Assoei@u
enter the subject here. CNRS.”



NEAR-INTEGRABLE SYSTEMS: RESONANCES AND ... 151

APPENDIX A: TRANSFORMATION OF Dy,

In this appendix we show that in the change of variable’
Eq. (2.11), the determinant Eq2.6) of the Green’s function
actually transforms as a density, i.e., that

Dw(9)dg;dg,=Dy(6)d6,do,.

A general resulf24] is that for point transformations, that is,
for canonical transformationp(q)— (P,Q) such that the
new positionQ does not depend on the old momentpm
Dy, transforms as a density. The difficulty here is that the
canonical transformation E@2.11) is nota point transfor-
mation.

Let us thus introduce a new set of canonical variables
(P,Q) defined by

Q(a)=6(q,dm). (A1)

On the torusJy, Q, and @ are equivalent, but this is no
longer the case as one considers a point outside of this torus.
Because Eq(Al) is a point transformation, one has indeed
for any phase space pointon the torusly,

Dv(Q)dQ,dQy,,

Du(g)dg;dg,= FIG. 12. Schematic representation of the motion of the tangent

to the invariant torugthick dashed arroyvand to the Lagrangian

and since one remains on the torus the meaddel 6, is
equal todQ,dQ,. Thus, applying the right-hand side of Eq.
(2.6), what remains to be shown is that
3°S19Q10Q1=09°S196,00;, i.e., dQ1/IP1=361/J;.

For this purpose, consider two Poincasections,P, at
6,=const andPq at Q,=const, containing the point Let
T be the mapping such that a trajectory startedéatJq;) in
Py crossesPq at (Qq,P1)=T(64,J;) anddT is its linear-
ization atr. Finally, we noteM® and M? the monodromy
matrices inP, and Py. Because#;=Q; on the torus

I, dT=(, t12) Moreover, M, is a sheer, ie.,
7}
M=(3 mllz) (mf,=961/33,). Therefore
M= (dT)M%dT) !
tor—to(Mi,+t5,)

2. 6
t5my,

0
my,

0
toottoi(myp,—tyo)

andm%=m?,, which is the desired property.

APPENDIX B: COMPUTATION
OF THE MASLOV INDICES

In Sec. Il, we have introduced three kinds of Maslov in-

manifold on which the semiclassical Green’s function is constructed
(thick solid arrow in a #,=const Poinqa{resection. Because the
torus is an invariant manifold, the forme#() is mapped onto itself
after winding M ,v,+ M,v,)/2 times around the periodic orbit. By
continuity p, therefore crosseM ;v;+M,v, or Mjv;+M,v,—1
depending on whethe#p;/dqg, is positive[final position (a)] or
negativelfinal position(b)].

allows a direct and simple expression in termapf
The aim of this appendix is to prove E@®.20), i.e., that
for a given torudy, ,

7v=(Miv;+M,ry) —O[gg

(@ is the Heaviside step functipgnTo see this, let us first
consideryy , the Maslov index of the periodic orbi on

the torusly, . By definition of the topology ¥ ,,M,) of the
periodic orbit, the trajectory windsl; times around’; and

M, times aroundC, and thereforezmy=(Miv,+M,v,).
Now 7, and »ny correspond to the same cur(a periodic
orbit of topology M), but not to the same manifold: the
former is associated with the invariant torus, whereas the
latter is the manifold on which the semiclassical Green'’s
function G(r,r'’) is constructed, namely, the set of trajecto-
ries started at with arbitrary momentum(on the energy

dices: 5, o, and the pair ¢,,v,), associated, respectively, surfaceE). Figure 12 then contains all the information re-
with the semiclassical Green's function, the Gutzwiller tracequired to relatépy, and sy, . Crossings of the singularities of
formula, and the two independent closed pathsindC, of  the manifold correspond to places where the tangent of the
a torus on which the actions(,1,) are computed. All three manifold becomes vertical. ConS|der|ng the linearized mo-
of them are “true” Maslov indices, in the sense that theytion around the orbit in a Poincamsection attached to the
represent the number of times a curve defined on a specifie@rbit, this means that the Maslov index is actually the num-
Lagrangian manifold crosses a line where the projection ober of traversals of the vertical, counted positively for clock-
the manifold on the configuration space is sing(he index  ward traversal and negatively for an anticlockward traversal,
depends therefore both on the curve and on the manifoldof the image of the vector tangent to the manifold at the
This is the case in particular for the index[16], although starting pointr. This is, respectwelyel for 7y andp, for
here we have only used it in the way it was original defineds,, . There is, however, a slight complication foy since its

by Gutzwiller [1] [see the text just after E43.17)], which  original position is precisely on the vertical. The prescription
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for the Qreen’s function is fchen to cons_idgr.tﬁq_tis actualllly SP=My180, + My6p,

on the right upper quadrafite., has an infinitesimal positive

component on the; axis. Now, since on the toruk, the (with DetM =1) or by the quadratic approximation to the
Poincaremap is the identityp; makes exactly/2 turns in ~ action

one iteration of the periodic orbit. By continuitp, makes " 0/ st

the same number of traversal of the vertical @g if S(01,02) =S+ pi(901 — 60y)
dq,/dp, is positive and one less ifiq;/dp, is negative.
Since, moreover, the Poincarenap is a sheer in
the (601,J;) coordinates, sdmq;/dp.]=sgnd6:/3d]
—sgif —gi] [where the last equality is deduced from Egs.YSing the relations’S/dq, = —p, anddS/dq; =p; gives

(2.15 and(2.16] and thereforeyy =7y — O[gg]. op1=—Adq,—Céq;,

A ) B '2 ,
+ 5(5(11) +§(5Q1) +Cdq,0q; |-

APPENDIX C: DERIVATION OF EQ. (3.8) FOR N=2 opy=+Céq,+Béq;

Consider in a Poincarsectiong,=const a fixed point and thusA=my;/my,, B=m,,/m;,, andC= —1/my,. With
(periodic orbi} (qg,pg) of the Poincaremap. Introducing S(q;)=5(q;.,q;), one has thereforedZS/dqf=A+B
69:=q:—0q) and &p;=p;—p?, the linearized motion +2C=(TrM—2)/(2my;), which, noting that Dé#l =1 im-
around the orbit can be characterized either by the monadplies DetM —1)=2—-TrM, gives the desired results

dromy matrixM = (m;;) (i,j=1,2) d2s Det(M —1)
89, =my;80; +My20p;, dag; 991/ dpy
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