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Trace formulas relate the quantum density of states to the properties of the periodic orbits of the underlying
classical system. The resulting expressions depend critically on the nature of the dynamics and whether the
orbits are stable or unstable. Several open questions exist for the class of classical systems that are near
integrability. The most important consequence of a generic perturbation to an integrable system is the creation
of resonances. We derive generalized expressions appropriate for resonances and apply them to a system that
can be taken as a paradigm for the transition from regular to chaotic dynamics.@S1063-651X~96!06506-3#
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I. INTRODUCTION

Twenty-five years ago, Gutzwiller derived a remarkable
semiclassical relationship between the density of states in a
quantum system and the properties of the periodic orbits in
the underlying classical mechanical system@1#. Known as
the ‘‘trace formula,’’ it has the form of an oscillatory sum of
weighted exponentials, each term corresponding to a unique
periodic orbit or one of its forward~backward! multiple re-
tracings. The phases are specified by Hamilton’s characteris-
tic function calculated along the periodic orbits with the in-
clusion of topological phases. Although the phase varies
from orbit to orbit, the nature of the dynamics, be it inte-
grable or chaotic, does not specifically enter into its defini-
tion. On the other hand, the weighting of each term or pref-
actor carries information about the local flow of the
trajectories neighboring the periodic orbit and thus is sensi-
tive to the structure of the dynamics. As a result, a great deal
of effort is typically required to derive the prefactors under
the various circumstances that arise.

In Gutzwiller’s derivation of the trace formula, he gener-
ates the expressions for well isolated orbits whose local dy-
namics are captured by linearization as corresponds to the
method of stationary phase. In two degrees of freedom
(N52) there exist two possibilities; the orbits are either
stable or unstable and both expressions were given. For
N.2, various combinations of the simple stable and unstable
motions are possible still within the assumption of the orbits
being isolated.

When discussing the various possible system dynamics, it
is advantageous to take a more global viewpoint than just
classifying every periodic orbit with regard to its stability
analysis. For our purposes, systems may be thought of as
belonging to one of a few classes: integrable, near-integrable,
mixed phase space, and fully chaotic. The extreme limits of
integrable or fully chaotic motion pose the fewest complica-
tions. For integrable systems where there exist as many con-

stants of the motion as degrees of freedom, the trajectories
lie on N-dimensional tori in the 2N-dimensional phase
space. In action-angle coordinates, the trajectories have fixed
actions and ‘‘wind around’’ in the angle coordinates that
monotonically increase with time. The periodic orbits can
mainly be expected to fall into the category of being noniso-
lated since they lie on tori with rational ratios of their wind-
ing numbers~otherwise they would only be quasiperiodic!.
To fill out a rational torus typically requires anN21 param-
eter continuous family of neighboring periodic orbits. There-
fore, with the exception of a few central orbits~a torus of
zero extent in all but one action coordinate!, the Gutzwiller
amplitude for stable orbits is insufficient to treat integrable
systems. Expressions such as the ones derived by Balian and
Bloch @2# and later in a general action-angle formalism by
Berry and Tabor@3# are then needed. We will return to that
subject later.

It is in the context of the correspondence principle for
chaotic systems, about which almost nothing was known
prior, that the majority of the work and greatest interest in
the trace formula has been focused. The fully chaotic system
has only unstable motion, no tori exist, and the majority of
the shorter and medium length periodic orbits would typi-
cally be isolated and sufficiently linearizable to satisfy the
conditions of Gutzwiller’s derivation. A number of successes
have been achieved whereby an evaluation of the trace for-
mula correctly predicts the lowest-lying energy levels in a
‘‘chaotic’’ spectrum@4#. Perhaps more importantly, working
in a reverse fashion, oscillations in physical observables or
densities of states were associated with underlying classical
periodic orbits@5#. The trace formula furthermore played an
essential role, along with the Hannay-Ozorio sum rule@6#, in
Berry’s derivation of the connection between long periodic
orbits uniformly wandering in phase space and spectral rigid-
ity @7# as found in random matrix theories@8#.

The level of difficulty that the dynamics presents in find-
ing an appropriate trace formula tremendously increases
away from these two extremes. The near-integrable regime is
characterized by imagining a weak generic perturbation to an
integrable system. The vast majority of the irrational tori
continue to exist in some distorted fashion consistent with
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the theorem of Kol’mogorov, Arnol’d, and Moser@9#. They
constitute a relative measure of the available phase space
near unity. Yet the rational tori have all disappeared being
replaced by chains of resonances on all scales; see Fig. 1.
Considering that the periodic orbits were originally on the
rational tori, a number of problems arise in attempting to
apply the trace formula blindly. Though the stable and per-
turbatively introduced unstable periodic orbits may now be
isolated in a mathematical sense, one cannot expect the vast
majority of periodic orbits to be locally linearizable over a
volume related to Planck’s constant\. This is true indepen-
dently of how deep the system is into the short-wavelength
regime. The Gutzwiller expression for the prefactors will
generally hold for at most a few orbits, diverge for certain
multiple retracings, and not be applicable to others.

Ozorio de Almeida considered the question of isolated
resonances@10#, i.e., the most significant by-product of a
generic perturbation, and provided a semiclassical expression
for their creation. In the decade following his work, little
concrete application or exploration of his ideas have taken
place. One difficulty is that, although he gave a semiclassical
theory, his main result is the derivation of an integral, which
is generally not easily evaluated. He suggested an approxi-
mation scheme that is rather restrictive and does not give a
full interpolation between the Berry-Tabor and Gutzwiller
limits.

In this paper, we give a full description of our work
briefly reported in a Letter@11#. Our main goals here are to
derive ~for systems with two degrees of freedom! a more
general form fully interpolating the two limits following
Ozorio de Almeida’s approach, loosening the most restric-
tive assumption, to discuss how to relate the parameters of
the theory to the properties of the periodic orbits, and to
verify the applicability of the generalized approach with a

paradigm for studies of the regular-to-chaotic-motion transi-
tion. Ozorio de Almeida and Hannay@12# also discuss satel-
lite periodic orbits coalescing with central ones and give the
appropriate normal forms. This generates standard diffrac-
tion catastrophe integrals. Recent work@13# has investigated
the most important diffraction case for the paradigm pre-
sented here and we shall not discuss the coalescence problem
further. Atkins and Ezra have also very recently discussed
certain resonances@14#, but not the generalization of Ozorio
de Almeida’s theory presented here.

Finally, mixed phase space systems are characterized by
widespread chaotic motion with significant embedded
Kol’mogorov-Arnol’d-Moser ~KAM ! regions, i.e., regions
whose phase spaces are structured like near-integrable sys-
tems. Mixed systems are extremely interesting because they
form the most generic class of systems and are quite preva-
lent. Examples abound in the dynamical models~anharmonic
oscillators! of vibrational motion in simple molecules,
atomic physics problems such as the diamagnetic Hydrogen
atom, and others. These systems are the most complicated
and very little has been written about the form that their trace
formulas should possess. To begin with, all the dynamical
complications of the near-integrable regime are associated
with the KAM regions as well and the expressions given in
this paper do apply to the KAM regions of mixed systems.
Nevertheless, although our ultimate goal is to treat mixed
systems, we just address the near-integrable regime in this
paper. Some of the additional problems of such systems that
remain to be understood are~i! the chaos-KAM borders that
also have structure on all scales,~ii ! trapping in the border
regions introducing intermittency in the chaotic part of the
dynamics, and~iii ! that there often exist miniscule stable
islands of motion deep within the chaotic region.

This paper is organized as follows. We begin in Sec. II
with an overview of integrable and near-integrable systems,
starting with the ideas of Berry-Tabor for nonisolated peri-
odic orbits and introducing in a second stage the semiclassi-
cal theory of Ozorio de Almeida. In Sec. III we then derive
an extended expression for interpolating the Berry-Tabor and
Gutzwiller amplitudes. A method of implementing the reso-
nance expressions is part of the development. At this point, a
method of analysis is introduced, in Sec. III D, that can be
thought of as ‘‘inverse-\ spectroscopy.’’ Finally, in Sec. IV
the two-degree-of-freedom coupled quartic oscillators are in-
troduced as a simple paradigm that can be conveniently ex-
amined classically and quantum mechanically@15#. The pe-
riodic orbits, their actions, stabilities, etc., and long stretches
of the quantum spectrum can be accurately computed. The
coupling of the oscillators is tuned across the entire near-
integrable regime to implement the interpolating expressions.
Excellent agreement is found between the quantum mechan-
ics and semiclassical theory. We also note some interesting
features arising from the emergence of a resonance within a
resonance as a system parameter is varied.

II. INTEGRABLE AND NEAR-INTEGRABLE SYSTEMS

We begin with some description of our intent in labeling a
system as belonging to the near-integrable class and with the
challenges posed by near-integrable dynamics. A purely
classical definition of integrability is easily stated, it being

FIG. 1. q250 Poincare´ sections for a system of coupled quartic
oscillators governed by the Hamiltonian Eq.~4.1!. As the perturba-
tion is turned on, the resonant tori of the integrable (l50.00) case
are replaced by island chains. For stronger coupling, chaotic regions
begin to develop.
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roughly the existence ofN constants of the motion in the
dynamics of anN-degree-of-freedom system; the trajectories
wind around onN-tori in phase space. Starting with the im-
age of a weak, generic perturbation to some integrable sys-
tem, the KAM theorem states that many irrational tori sur-
vive the perturbation in some distorted fashion, whereas the
rational tori are destroyed and replaced by resonances. We
might therefore be tempted to define a purely classical crite-
rion for determining near integrability as being those systems
whose phase space measure of surviving tori compared to the
measure of the full energy surface of interest remains close
to one. However, our principal interest here is in semiclassi-
cal trace formulas wherein\ plays a critical role. The clas-
sical dynamics most relevant to the quantum mechanics oc-
curs within a Heisenberg timetH determined with the
energy-time uncertainty relation; the energy scale is just
given by the mean level spacing in the spectral region of
interest. We therefore really have in mind more of an
\-dependent notion of what ‘‘near-integrable’’ means. Spe-
cifically, we will have to deal with the creation of resonances
and some further complications~see the results!, but under-
standing the dynamics up totH does not include having to
deal with chaos explicitly nor the interface between chaotic
and regular phase space domains. These problems are inher-
ent to the mixed phase space regime and are beyond the
scope of this work. In other words, if (I ,w) are action-angle
variables for an unperturbed two degree-of-freedom inte-
grable system, then up totH , the full Hamiltonian

H~ I ,w!5H0~ I !1eH~ I ,w! ~2.1!

is essentially identical to the integrable dynamics generated
by averaging over the fast angle variable

H~ I ,w1!5H0~ I !1
e

2pE0
2p

dw2H~ I ,w!, ~2.2!

which retains the resonances but eliminates any chaos.
The most obvious complications introduced by a pertur-

bation are apparent in Fig. 1, where the surface of section of
an integrable system is pictured next to the same surface for
the system with an added perturbation. At the center, there is
an isolated periodic orbit with other isolated periodic orbits
around it too closely intertwined to be treated independently.
Farther from the center lies our main concern, the multiple
resonances that are too narrow to treat with a simple linear-
ization as leads to the Gutzwiller amplitudes, but far enough
from the central orbit to be dealt with independently. The
problem of multiple, simultaneous resonances was also
briefly discussed in@12#.

A. Background

We give a brief background on the work of Gutzwiller
@1#, Berry and Tabor@3#, and Ozorio de Almeida@10# to
remind the reader of the current status of the subject and also
to fix our notation for the rest of the paper. Consider a sys-
tem governed by a Hamiltonian whose quantum form is de-
notedĤ(p̂,q̂) and whose classical form is denoted H(p,q).
The density of statesr(E) at energyE is expressible in
terms of the energy-dependent Green’s function
G(q9,q8;E)5^q9u(E2Ĥ)21uq8&:

r~E!5Tr$d„E2Ĥ~ p̂,q̂!…%52
1

p
ImE dqG~q,q;E!. ~2.3!

The semiclassical approximation then can be used to relate
the quantumr(E) to properties of the underlying classical
system.r(E) decomposes into an average and a fluctuating
componentr(E)5 r̄(E)1rfl(E), respectively, where

r̄~E!5
1

~2p\!N
E dp dqd„E2H~p,q!… ~2.4!

rfl~E!52
1

p
ImH 1

i\~2p i\!~N21!/2E dq(
t

uDtu1/2

3expS iSt~q,q;E!

\
2 ih t

p

2 D J , ~2.5!

Dt5U]2S/]q9]q8 ]2S/]q9]E

]2S/]q8]E ]2S/]E]E U5
1

q̇Nq̇N8
U ]2S

]q̃]q̃8
U

@ q̃5~q1 ,q2 , . . . ,qN21!#. ~2.6!

The equation forr̄(E) expresses the notion that a quantum
state occupies a cell in ‘‘phase space’’ of volume (2p\)N.
Other thanr̄(E);O(\2N), it is of no further interest in this
paper. The sum inrfl(E) runs over all classical trajectories
t starting atq and returning toq at energy E. St is the action
*p dq along the trajectory andh t is a topological phase
index counting conjugate points. Finally,Dt is the determi-
nant involving second derivatives of the action evaluated at
q95q85q ~see Sec. 2 of@1# and also the discussion in Sec.
III of @16#!.

Gutzwiller evaluated this integral with the method of sta-
tionary phase finding@1#

rfl~E!5
1

p\(
P

T

r uDet~M21!u1/2
cosS S\ 2s

p

2 D . ~2.7!

The stationary phase condition restricts the trajectory sum to
periodic orbitsP. S, T, M , and s are the orbit’s action,
period, monodromy matrix, and Maslov index, respectively.
r is the number of retracings for a given primitive orbit. The
assumption that the orbits are isolated generates the forms
for the amplitude.

B. Berry-Tabor amplitudes

For nonisolated stable periodic orbits~i.e., rational tori!,
we follow the second derivation of Berry and Tabor@3~b!#
except that we start from the energy-dependent Green’s func-
tion instead of the propagator and restrict ourselves to
N52 systems. Assuming now that the Hamiltonian is clas-
sically integrable, it can be expressed in action-angle vari-
ables (I ,w) (w1 ,w2P@0,2p#) asH(I ). For a given torus we
note v i5]H/]I i ( i51,2), the corresponding angular fre-
quencies, anda[v1 /v2 , the rotation number of the torus.
The actions (I 1 ,I 2) are constants of motion since
İ i5]H/]w i50. Periodic orbits are associated with tori such
that the rotation number is rational, i.e.,a5m1 /m2 , where
m1 andm2 are coprime integers. They can be labeled by the
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two integersM5(M1 ,M2)5(rm1 ,rm2), where (m1 ,m2)
specifies the primitive periodic orbit andr is the number of
repetitions.Mi ( i51,2) is thus the number of windings of
w i in a complete round-trip on the orbit (r repetitions of the
primitive!.

Focusing now on the contribution to the fluctuating part
of the density of statesrM of the orbitM ,

rfl5(
M

rM , ~2.8!

rM~E!5
1

p\
ReH E dq

A2p i\
uDMu1/2

3expS iSM0 ~q,q!

\
2
ihMp

2 D J . ~2.9!

Denoting IM the actions of the corresponding torus, the ac-
tion SM

0 along the orbit is given by~note the 2p factor be-
tweenS and I )

SM
0 5 R orbitp•dq5 R orbitI•dw52pIM•M . ~2.10!

As always, it is the prefactor that remains to be evaluated.
This, however, can be derived in a straightforward manner if
one uses a system of coordinates for which one direction is
taken along the orbit@1,16#. These coordinates are given ex-
plicitly by the standard canonical transformation
(I ,w)→(J,u) generated by F2(J,w)5(m2w12m1w2)J1
1w2J2:

u15m2w12m1w2 , J15I 1 /m2 ,

u25w2 , J25I 21~m1 /m2!I 1 , ~2.11!

for which, on the torusIM, u1 is constant along a trajectory.
On IM, u1 thus specifies the particular trajectory andu2 the
position on the trajectory. Recall that for the transformation
Eq. ~2.11! to be one to one,u2 should be taken in the range
@0,2pm2# rather than@0,2p#. With r repetitions, the trajec-
tory launched atu5(u1 ,u2) is such that the final position
u8 is (u18 ,u28)5(u1 ,u212prm2).

In these coordinates the actionSM
0 is unchanged, being

canonically invariant. Moreover, when performing the
change of variables (q1 ,q2)→(u1 ,u2) in the integral Eq.
~2.9! ~the action variables are fixed toIM), it can be seen that
the determinantDM transforms as a density, i.e.,

DM~q!dq1dq25DM~u!du1du2 , ~2.12!

whereDM(u) is defined by Eq.~2.6! but in the (J,u) coor-
dinates. This property basically justifies working from the
beginning in action-angle coordinates~as done, for instance,
in @3~b!# or in @10#!, although the exact quantum Green’s
function is only defined in the originalq variables. Because
the justification of this point involves some subtleties, we
shall discuss it in more details in Appendix I.

Using the right-hand side form of Eq.~2.6!, the prefactor
can be put in the form

uDM~u!u1/25
1

v2
US ]u18

]J1
D

u1
U21/2

. ~2.13!

The main point is that the evolution (u1 ,J1)→(u18 ,J18) ~here
with J185J1) is a Poincare´ mapping between twou25const
Poincare´ sections.E, u2 , and u28 are constant. Using rela-
tions implied by Eq.~2.11!

u18~J1 ,u1!5u112prm2
2~a2m1 /m2! ~2.14!

and

S ]u18

]J1
D

u1

52prm2
2S ]a

]J1
D
E

. ~2.15!

We introducegE ~see Sec. IV of@15#!, the function describ-
ing the energy surfaceE. It is such that forI 25gE(I 1), the
energy is fixed so thatH„I 1 ,I 25gE(I 1)…5E. Differentiating
both sides of this last equality yieldsdgE /dI152a, giving

S ]a

]J1
D
E

5m2S ]a

]I 1
D
E

52m2

d2gE
dI1

2 . ~2.16!

DM(u) is therefore inversely proportional to the curvature of
the line H(I 1 ,I 2)5E and is, as expected, independent of
u. TheM torus contribution reduces to

rM~E!5
1

p\
ReH 1

A2ip\

1

u2prm2
3gE9 u1/2

3E
0

2p

du1expF iSM0\
2
ihMp

2 G E
0

2pm2du2
v2

J . ~2.17!

The integral overu2 is the single traversal periodTM /r of
the periodic orbit, which on a torus is independent ofu1 .
Later we shall need to be more careful evaluating theu2
integral. This is automatically taken care of by rewriting Eq.
~2.17! as a partial derivative with respect to energy

rM~E!5
1

p\
ReH 1

A2ip\

1

u2pM2
3gE9 u1/2

3E
0

2p

du1TMexpF iSM0\
2
ihMp

2 G J
5

1

p\
ReH 1

A2ip\

1

u2pM2
3gE9 u1/2

3
\

i

]

]EE0
2p

du1expF iSM0\
2
ihMp

2 G J ,
~2.18!

where the second form follows using the relation
T5]S/]E. On a torus the integral overu1 gives a factor
2p. Thus the contribution of the orbits of topologyM for an
integrable system is

rM
BT5

TM
p\3/2M2

3/2ugE9 u1/2
cosSSM0\ 2

hMp

2
2

p

4 D . ~2.19!
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The Maslov indexhM of the semiclassical Green’s function
is expressed in terms of the Maslov indices (n1 ,n2) of the
paths on which the actions variables are defined as~see Ap-
pendix II!

hM5~M1n11M2n2!2Q~gE9 !, ~2.20!

whereQ is the Heaviside step function. For two-dimensional
systems Eq.~2.19! is equivalent to the expression given by
Berry and Tabor in@3#.

C. The nearly integrable regime

Following Ozorio de Almeida, we begin with a Hamil-
tonianH close to integrability written in the form

H~ I ,w!5H0~ I !1eH~ I ,w!, ~2.21!

where the perturbationeH is ‘‘small’’ ~in a sense to be
specified later!. We shall here investigate how the contribu-
tion rM of the periodic orbits of ‘‘topology’’
M5(M1 ,M2) to the density of states is modified by the
perturbing term.

For a sufficiently small perturbation, the change inrM of
Eq. ~2.9! is essentially due to the modification of the phase,
since the action is multiplied by the large factor 1/\ and the
variation of the determinantDM gives a higher-order correc-
tion. Therefore, in the evaluation of the integral, one should
keep the~unperturbed! zeroth-order approximation forDM
and look for the first correction of the action. Indeed, since
(I 1 ,I 2) are no longer constants of the motion,SM is not
given by Eq.~2.10!, but a position-dependent termdS(q) has
to be added toSM

0 .
Classical perturbation theory tells us that the first-order

correction to the action is given by the integral@17#

dS~q!52e R Hdt ~2.22!

taken on theunperturbed trajectorystarting and ending at
q. ThusdS depends on the unperturbed trajectory on which
q lies, but not on the position along the trajectory.~This
property, though not surprising, is, nevertheless, not com-
pletely obvious since the perturbed trajectories starting and
ending at a given point usually differ when one is moving
along an unperturbed trajectory.! In terms of the coordinates
(J,u) defined by Eq.~2.11!, this means thatdS depends only
on u1 , but not onu2 .

From Eq.~2.17!, Ozorio de Almeida found that the effect
of the perturbation is merely to replace the
cos(SM

0 /\2hMp/22p/4) by Re@Rexpi(SM
0 /\2hMp/2

2p/4)# in the expression Eq.~2.19! of rM
BT , where

R5
1

2pE du1exp@ idS~u1!/\#. ~2.23!

The multiplicative factorR takes into account the small
dephasing between different closed orbits in configuration
space of topologyM due to the fact that the resonant torus
on which they exist is slightly broken by the perturbation.
Thus an orbit of topologyM closed in configuration space is
generally no longer periodic.

Ozorio de Almeida suggested writingdS(u1) in term of
its Fourier series

dS5 (
n50

`

DSncos~nu12xn!. ~2.24!

The benefit is that the coefficientsDSn usually decay rapidly
as a function ofn. A natural simplifying ansatz would there-
fore be that only the first harmonic of the above expansion
has to be taken into account. The constantn50 term can be
included in the unperturbed motion. Setting the origin of
u1 at x1 , dS reduces to

dS5DScos~u1!. ~2.25!

In that case the integral Eq.~2.23! is the Bessel function
J0(DS/\) and the contributionrM to be used in Eq.~2.9! is
@10#

rM5rM
BTJ0~DS/\!, ~2.26!

where the Berry-Tabor contributionrM
BT is given by Eq.

~2.19!.

III. RESONANCES: GENERALIZATION
AND IMPLEMENTATION

It turns out that postulating the form Eq.~2.25! of the
perturbative action generates rather strong restrictions on the
applicability of the uniform approximation in Eq.~2.26!. Ge-
nerically, because of the Poincare´-Birkhoff theorem, only
two orbits survive the destruction of the resonant torus: one
stables and one unstableu. We suppose that the actions
Ss andSu and the monodromy matricesMs andMu of these
two orbits are known or can be computed. We shall see
below that if Eq.~2.25! holds,

Det~Ms21!1Det~Mu21!.0. ~3.1!

Consider that Det(Ms21) is confined to the interval@0,4#
and Det(Mu21) to the interval@2`,0#. Almost all of the
possible range of Det(Mu21) is beyond the simplifying an-
satz behind Eq.~2.25!. Generically, under increasing pertur-
bation Eq.~3.1!, and thus Eq.~2.25! as well, quickly fails to
hold. This is confirmed later in Sec. IV for coupled quartic
oscillators.

A second concern is that in practice, especially if one is
considering a resonance inside a KAM island of a mixed
system, the unperturbed HamiltonianH0 expressed in action-
angle variables andeH are unknown. A method is needed to
evaluate the different parameters entering the formulas of
Eqs. ~2.19! and ~2.26!, including the generalization given
ahead, without having to refer to action-angle coordinate sys-
tems. The most important parameters are the curvaturegE9 of
the lineH(I 1 ,I 2)5E and the amplitudeDS of the correction
to the action. In addition, a criterion is needed to indicate
under what circumstances the theory will apply. It happens
that all this information is encoded in the characteristics of
the perturbed, isolated periodic orbits.
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A. Pendulum mapping

Instead of truncating the series as in Eq.~2.25!, we map
the problem onto the pendulum. Let

SM~u1!5S̄M~e!1DS~e!cos~j!, ~3.2!

whereu15 f (j) and

S̄M~e!5
1

2pE0
2p

djS~u1!. ~3.3!

This is possible sinceSM(u1) has but a single maximum and
minimum occurring each interval on 2p. In principle, all the
angular complexity of the functionSM(u1) has been trans-
ferred to the parametric relationshipu15 f (j). The advan-
tage here is thatDS(e)cos(j) is the action variation of the
standard pendulum from Eq.~2.22!. The relationship be-
tween the variablesu1 andj is smooth and nearly linear.

BecausedSM(u1)/du15J182J1 ~both initial u1 and final
u185u1 angles are varied!, the periodic orbits correspond to
extremal actions. Thusj50 orp for the stable and unstable
periodic orbits. Choosing the unstable orbit as the origin of
j, the amplitudeDS(e) is related to the actions of the peri-
odic orbits by

DS~e!5
Su2Ss
2

~3.4!

and the average actionS̄M by

S̄M~e!5
Ss1Su
2

. ~3.5!

To complete the derivation of a uniform approximation
for rM , we need to specify the mapping ofu1 onto j. As a
function of either variable, the action is periodic on 2p in-
tervals. The difference between the variables is therefore pe-
riodic as well. Keeping only the longest-wavelength oscilla-
tion in a Fourier decomposition of the difference, we
approximate

u1'j2a~e!sin~j1f!. ~3.6!

This approximation is quite different from truncating Eq.
~2.24! after then51 term. In fact, it is possible to invert Eq.
~3.6! as a Taylor series in the ‘‘small’’ parametera(e) as

j5 (
n50

`

cn~u!
a~e!n

n!
, ~3.7!

wherecn(u) can be found recursively. Inserting this expres-
sion into the cosine argument of Eq.~3.2! and expanding
appropriately~and tediously! would generate an infinite se-
ries of the form of Eq.~2.24! with some decreasing set of
DSn asn→` depending on the value ofa(e).

In the same way the actions of the stable and unstable
orbits determine the amplitudeDS(e), their stability, i.e.,
their monodromy matricesM , is related to the second de-
rivative of the actiond2SM(u1)/du1

2 . More precisely, one
can apply a general identity used in the derivation of the

Gutzwiller trace formula~see Sec. 4 of@1# or Sec. IV B of
@16#; for N52 systems, we give a short derivation in Appen-
dix III !. The result is

d2SM~u1!

du1
2 52

Det~M21!

~]u18/]J1!u1

, ~3.8!

where u18(u1 ,J1) is the Poincare´ map whose zeroth-order
~unperturbed! approximation is given by Eq.~2.14!.

Using the chain rule,

d2SM~u1!

du1
2 52DS~e!Fcos~j!S dj

du1
D 21sin~j!

d2j

du1
2G

57DS~e!S dj

du1
D 2 ~3.9!

where2 is for the unstable orbit and1 is for the stable orbit.
Two relations for the stability determinants of the periodic
orbits follow now from Eqs.~3.8!, ~2.15!, and~2.16!;

Det~Mu21!52
2prm2

3gE9DS~e!

@12a~e!cosf#2
, ~3.10a!

Det~Ms21!51
2prm2

3gE9DS~e!

@11a~e!cosf#2
. ~3.10b!

There are two ways to view these equations. First,gE9 can be
independently evaluated; one method is described in@15#.
There are then two equations, but only one unknown:
ã(e)5a(e)cosf. The consistency of the two equations is a
measure of the validity of the approximation in Eq.~3.6!.
The second viewpoint is just to assume that the system is in
the near-integrable regime and the approximation is valid.
Generally, the independent evaluation ofgE9 can be rather
laborious and time consuming. Instead, one can use the equa-
tions to solve simply and quickly for bothgE9 and ã(e). In
this way, every quantity necessary for our theory is given by
properties of the periodic orbits alone. Then so long asgE9 is
approximately constant and equal to the value obtained as
e→0, the mapping is a valid approximation. We shall follow
the second route, although for the calculations of Sec. IV we
perform an additional analytical computation ofgE9 that veri-
fies that, ase→0, the two determinations are identical.

Taking the ratio of the two cases and doing some algebra
fixes the value ofã(e) to be

ã~e![a~e!cosf5
k21

k11
, ~3.11!

where

k5S 2
Det~Mu21!

Det~Ms21! D
1/2

. ~3.12!

Ozorio de Almeida’s results are recovered in cases where
k→1, i.e., under the condition that Eq.~3.1! holds.gE9 fol-
lows trivially from either of Eqs.~3.10!.

The integral of Eq.~2.18! can now be evaluated straight-
forwardly using the integral
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E
0

2p

du1expF iDS~e!

\
cos~j!G

5E
0

2p

dj@12a~e!cos~j1f!#expF iDS~e!

\
cos~j!G

52pFJ0S DS~e!

\ D2 i ã~e!J1S DS~e!

\ D G . ~3.13!

Note that the above expression depends only onã(e) and not
on a(e) and cosf independently. It is thus entirely specified
by Su , Ss andk. Denotingse5DS(e)/\, the final result for
the contribution to the density of states is

rM~E!5
1

pu\3M2
3gE9 u1/2

ReH \

i

]

]E
expS iS̄M~e!

\

2
ihMp

2
2
ip

4 D @J0~se!2 i ã~e!J1~se!#J
5

1

pu\3M2
3gE9 u1/2

ReH expS iS̄M~e!

\
2
ihMp

2
2
ip

4 D
3F T̄@J0~se!2 i ã~e!J1~se!#

1 iDTFJ1~se!1
i ã~e!

2
@J0~se!2J2~se!#G G J ,

~3.14!

whereJ0(z), J1(z), andJ2(z) are the standard Bessel func-
tions. The average periodT̄5(Ts1Tu)/2 is half the sum of
the two periodic orbit’s periods and the difference is
DT5(Tu2Ts)/2, consistent with the corresponding notation
for the actions.

B. Limiting cases

The limiting cases of the Berry-Tabor result and the
Gutzwiller results are easily recovered. The former is ob-
tained trivially as DS(e)→0 ~likewise DT→0) since

S̄M(e)→SM
0 and the Bessel function expression in parenthe-

ses reduces to unity. The other limit follows using the as-
ymptotic expression for Bessel functions of large arguments:

Jn~z!→A 2

pz
cosS z2n

p

2
2sgn@z#

p

4 D , z real.

~3.15!

Then, after some algebra and the application of Eq.~3.10!,

rM~E!→
1

p\

1

u2pM2
3gE9DS~e!u1/2H ~ T̄2DT!@11ã~e!#

3cosS S̄2DS

\
2~h1gs!

p

2 D 1~ T̄1DT!@12ã~e!#

3cosS S̄1DS

\
2~h1gu!

p

2 D J
→

1

p\ H Ts
r uDet~Ms21!u1/2

cosSSs
\

2ss

p

2 D
1

Tu
r uDet~Mu21!u1/2

cosSSu
\

2su

p

2 D J , ~3.16!

whereSs ,Ts andSu ,Tu are the actions and periods of the
full orbits ~i.e., not the primitives!. gu5Q(DS)5Q(gE9 ) and
gs5Q(2DS)5Q(2gE9 ) (Q is the Heaviside step function!
arise because of the sgn@z# in Eq. ~3.15! and we define

su[hM1gu5~M1n11M2n2!, ~3.17a!

ss[hM1gs5~M1n11M2n2!2sgn@gE9 #. ~3.17b!

Noting that the Maslov indexs in Eq. ~2.7! is, by definition
@1#, equal tohM1Q@2d2S/du1

2# and thatd2S/du1
2 is here

given by Eq.~3.9!, Eq. ~3.16! is seen to be precisely the
contribution of the stable and unstable orbit to the Gutzwiller
trace formula.

Here a remark is in order. The term proportional toDT in
Eq. ~3.16! arises because in Eq.~3.14! theu1 dependence of
not only dS, but alsoTM , has been taken into account. We
began by saying that the perturbation of the determinant
prefactor can be neglected, so it would seem reasonable to
neglect the variation ofT as well. In addition, Eq.~3.10! has
essentially been derived for the unperturbed system. How-
ever, the combined result of accounting for the period varia-
tion and using Eq.~3.10! to determineg9(E) is that the
Gutzwiller amplitude is recoveredexactly for large DS/\.
Thus, our expressions being correct to the extent that the
Gutzwiller trace formula is valid for largeDS/\, it will be
seen to hold even for very large classical perturbations in
spite of a derivation whose starting point is first-order clas-
sical perturbation theory.

C. Discrete symmetries

The theory given so far for a generic perturbation must be
slightly modified if the system possesses discrete symmetries
including the perturbation terms. Instead of a single stable
and a single unstable orbit created as the rational torus is
destroyed and replaced by a resonance, it is possible that
multiple orbits survive, which together build up the full reso-
nance structure. Letl denote the number of surviving stable
~or unstable, it is the same! orbits. The value ofl depends on
the discrete symmetry and the torus. Each of thel stable
~unstable! orbits will map onto any of the other similarly
created stable~unstable! periodic orbits through the applica-
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tion of one of the operators of the discrete symmetry group.
There are thusl multiple copies of identical pendulum struc-
tures in the resonance. Crudely speaking, each periodic orbit
is l times too short to explore the full resonance. In other
words,u and j are not periodic on the same angular inter-
vals. Asj covers@0,2p#, u only covers@0,2p/ l #. Equation
~3.6! must be replaced by

lu1'j2a~e!sin~j1f!. ~3.18!

With a little simple algebra, it can be seen thatã(e) retains
its same definition as given in Eq.~3.11!, but that the pro-
portionality of the curvaturegE9 to the Det(M21) is modi-
fied by a factorl 2 to become

Det~Mu21!52
2prl 2m2

3gE9DS~e!

@12ã~e!#2
, ~3.19a!

Det~Ms21!51
2prl 2m2

3gE9DS~e!

@11ã~e!#2
. ~3.19b!

All the rest of the semiclassical treatment follows without
further modification.

D. Inverse-\ spectroscopy

Because many oscillating terms contribute to the total
density of states, it is difficult to verify the role of specific
orbits directly in the spectrum. As has been previously con-
sidered@18#, the spectrum can be transformed in order to
separate orbit contributions by their classical actions. A con-
venient scheme begins with the simple observation that in
Eq. ~3.14! and in the diffraction integrals that arise, classical
actions appear divided by\. With t denoting\21, the vari-
ables of actionS and the inverse Planck constantt can be
taken as a Fourier transform pair with the transform kernel
k(t)5e2 iSt. Instead, it is useful to introduce some minor
modifications. First, we add an exponential damping to the
kernel because later we will not have access to an infinite
range of t ~i.e., we will have only a finite stretch of the
spectrum!. Second, adding a factort21/2 turns out to generate
compact analytic forms as a function ofS for the complete
periodic orbit expressions. The form we use is equivalent to
Gaussian damping, but in the variablet1/2. Other choices are
possible, but this version is quite convenient.

The density of states must now be considered both as a
function of t andE. In other words, as\ changes the energy
levels move, forming continuous curves when drawn in the
(t,E) plane. The energy curves will intersect a fixed energy
value only at special or ‘‘quantized’’ values oft. It is the
transformation of this ‘‘t spectrum’’ that allows a precise
view of the effects of the individual orbits. We therefore
consider the action function

R~S,E!5E
0

`

dtk~ t !r~ t,E!5E
0

`

dt t21/2e2~a2 iS!tr~ t,E!.

~3.20!

Expressing the density of states as a sum over periodic
orbit contributions, each labeled byj , gives

R~S,E!5(
j
Rj~S,E!,

Rj~S,E!5E
0

`

dtt21/2e2~a2 iS!tr j~ t,E!. ~3.21!

The actual expression forRj (S,E) now depends on the
orbit and whether it belongs to a resonance as covered by Eq.
~3.14! or one of the diffraction integrals discussed elsewhere
@13#. For resonances one obtains@introducing
pj (E)5a2 i (S2S̄j )#

Rj~S,E!5E
0

`

dtte2~a2 iS!t
1

puM2
3gE9 u1/2

3ReH 1t i ]

]E
expS iS̄j t2

ihMp

2
2
ip

4 D
3@J0~DSjt !2 i ã~e!J1~DSjt !#J

5
iexp~ ihMp/21 ip/4!

2puM2
3gE9 u1/2

]

]E

3
11@ i ã~e!/DSj #~Apj21DSj

22pj !

Apj21DSj
2

.

~3.22!

In evaluating the integral, the Re$ % restriction may be re-
placed by 1/2 of the complex conjugate expression since for
S and S̄j of opposite sign the integral is essentially zero.
Equation~3.22! is the functional dependence that we expect
resonances to show in the similarly transformed exact quan-
tum spectrum. The final expression after carrying out the
derivative~note]pj /]E5 i T̄ j ) is

Rj~S,E!5
exp~ ihMp/21 ip/4!

2puM2
3gE9 u1/2

3F T̄j@pj1 i ã~e!DSj #2DTj@ ã~e!pj1 iDSj #

~pj
21DSj

2!3/2

1
ã~e!DTj

DSj
2 S 12

pj
~pj

21DSj
2!1/2

D G . ~3.23!

For completeness, we also give the expression deriving from
the Gutzwiller trace formula

Rj~S,E!5
Tuexp~ isup/2!

4r upDet~Mu21!u1/2@a2 i ~S2Su!#
3/2

1
Tsexp~ issp/2!

4r upDet~Ms21!u1/2@a2 i ~S2Ss!#
3/2

~3.24!

and the Berry-Tabor result

RM~S,E!5
T̄M
0 exp~ ihMp/21 ip/4!

2puM2
3gE9 u1/2@a2 i ~S2S̄M

0 !#2
. ~3.25!
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IV. COUPLED QUARTIC OSCILLATORS

Any of a number of systems, such as the diamagnetic
hydrogen atom in certain field regimes, are suitable for veri-
fying the theory of the preceding section. We have studied
two coupled quartic oscillators in depth previously because
of its transition from integrable to chaotic motion as the cou-
pling increases. The most detailed information can be found
in Ref. @15#, where numerical techniques enabling us to cal-
culate tens of thousands of quantum levels to high precision
are described. This will make it possible to resolve various
orbit contributions with a very sharp precision. Previous
work by several groups has been published on the quartic
oscillator’s periodic orbit theory@19–21#. However, these
works focus on the strongly chaotic coupling regime,
whereas our interest here lies in the near-integrable and ulti-
mately mixed phase space regimes.

A. Classical oscillators

Let us first recall the salient features of the dynamics. The
quartic oscillator’s Hamiltonian can be written as

H~l!5
p1
21p2

2

2
1V~q1 ,q2!,

V~q1 ,q2!5a~l!S q14b 1bq2
412lq1

2q2
2D , ~4.1!

wherea(l) is a largely irrelevant constant chosen for tech-
nical convenience in making the quantum calculations and
l is the parameter governing the coupling between the oscil-
lators and is responsible for the variation of the system from
integrable (l50) to chaotic dynamics (20.6.l.21.0).
@The value of the constant is given by
a(l)5 (4m2/9p2\4) K2(12l/2), where K(z) is a com-
plete elliptic integral of the first kind and effectively
m5\51, K(1/2)51.854 074 677 301 372.# The range
(0.0.l.20.15) approximately corresponds to the near-
integrable regime where the chaos is narrowly contained and
far from having a global covering of phase space. Neverthe-
less, we show in Fig. 1 a sequence of surfaces of section with
l decreasing towards20.15 to illustrate the significant
changes in the dynamics in the intervallP@20.15,0.0#.
One sees thatl520.15 is by no means a ‘‘weak’’ pertur-
bation to the integrable system. But for the reasons described
at the beginning of Sec. II and the results found later, it shall
still be considered as belonging to the near-integrable re-
gime. The parameterb5p/4 is set differently from one in
such a way that, in addition to time reversal invariance, the
system has the symmetryC2v of the rectangle generated by
the reflectionP1 and P2 across to the linesq150 and
q250; l52 in Eq.~3.19! for the resonances pictured in Sec.
V. The potentialV(q… is homogeneous in (q1 ,q2) which
leads to scaling relations in the dynamics. Any trajectory
@qE(t),pE(t)# on the energy surfacesE can be mapped onto
a trajectory@q0(t),p0(t)# on the energy surfaceE051. With
g5(E/E0)1/4,

pE~ t !5g2p0~gt !, qE~ t !5gq0~gt !. ~4.2!

For the periodT and actionS of some period orbit, Eq.~4.2!
leads to

TE5g21T0, SE5g3S0. ~4.3!

Using the relation]S/]E5T and Eq.~4.3!, S054E0T0/3.
In Sec. III, our goal had been to express quantal properties

of a system in terms of classical quantities such as the action
and monodromy matrix of periodic orbits. This is of practical
interest because, especially in the nearly integrable regime,
there exist efficient methods to compute numerically these
quantities even when it is not possible to obtain them ana-
lytically. The approach used here is the one suggested by
Barangeret al. @22#, which consists in starting from known
orbits and following them by continuity as a parameter is
varied. We have in fact essentially implemented their algo-
rithm to which we refer the reader for a detailed description.
We stress though that this algorithm allows for a simulta-
neous computation of both the periodic orbits and their as-
sociated monodromy matrix. The main difference here is
that, instead of varying the energy as was done by Baranger
et al., it is kept fixed~and equal toE051) and the parameter
varied is the couplingl between the two oscillators.

As a starting point, we use the periodic orbits of the inte-
grable systeml50 for which the motion of the two oscilla-
tors is decoupled and governed, respectively, by the one-
dimensional Hamiltonians

H15p1
2/21~a0 /b!q1

4 ,

H25p2
2/21~a0b!q2

4 ~4.4!

@a05a(l50)50.154 800 436 631 7#.
Determining the changing periodic orbits of interest as

l moves away from zero involves two steps. The first one
consists of determining the resonant tori~i.e., the families of
periodic orbits! of thel50 Hamiltonian. This part is rather
straightforward since to any rational rotation number
a5m1 /m2 , wherem1 andm2 are coprime integers, the reso-
nant torus of topology (m1 ,m2) is determined by the condi-
tions

a5
m1

m2
5
T2
T1

, ~4.5!

E11E25E051. ~4.6!

The periodsT1 andT2 of the two one-dimensional quartic
oscillators can then be expressed in term of the energiesE1
andE2 in the corresponding modes as

T15jS b

a0E1
D 1/4, T25jS 1

a0bE2
D 1/4 ~4.7!

@with j5G( 14)
2/(2Ap)#. This readily yields

E15
m1
4

m1
41b22m2

4 , E25
m2
4

m2
41b2m1

4 , ~4.8!

which uniquely specify the resonant torus.
A given resonant torus corresponds to a one-parameter

family of periodic orbits. As soon as the perturbing coupling
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is turned on, however, the usual scenario, as described by the
Poincare´-Birkhoff theorem, is that all of them are instanta-
neously destroyed, except for two trajectories~in the absence
of symmetries!, one stable and one unstable. We shall in the
following denote bySm1m2(l) andUm1m2(l) these surviv-
ing orbits. Of course, we need to locate from where on the
torus the surviving orbits originate. In general, this requires
some further computation. However, for the Hamiltonian in
Eq. ~4.1! the symmetries of the system simplify the problem.
Considering a given resonant torus (m1 ,m2) and working,
for instance, in aq250 Poincare´ section, the surviving peri-
odic orbits for infinitesimal, but nonzero, coupling are the
extrema of the actiondS(q1 ,p1)52rdVdt, wheredV(q… is
the perturbing potential, and the integral is taken along the
unperturbed orbit starting and ending at (q1 ,p1). In spite of
the notation used,q1 and p1 are not independent variables
since (q1 ,p1) is constrained to be on the intersection of the
resonant torus with the Poincare´ section. It can be seen that,
because of the symmetries,dS is necessarily an even func-
tion of both q1 and p1 . ThereforedS has to be extremal
whenever eitherq1 or p1 is equal to zero. It then suffices to
check that the extrema on theq1 axis do not correspond to
the same periodic orbit as the one on thep1 axis to ensure
that bothUm1m2 and Sm1m2 have been found. The rare
orbits for which this is not true have to be treated separately.
This consideration, together with Eq.~4.8!, entirely specifies
the original orbits, which we are going to follow from
l50.0 tol520.15 covering the full near-integrable regime
of coupling.

B. Quantum oscillators

The Schro¨dinger equation and scaling relations are sum-
marized as

EC~q!52
\2

2m S ]2

]q1
2 1

]2

]q2
2DC~q!1aV̂~q!C~q!,

Ei
a5a1/3Ei

0 ,C i
a~q!⇒C i

0~a21/6q!. ~4.9!

A nice simplification of using this homogeneous potential is
the relation between the energy eigenvalues$En% found at
fixed \ and the\ eigenvalues$\n% found at fixed energy
E. For our choice of constanta(l), the following exact
relation holds for alll andn51,2,3, . . .̀ :

SEn

E D 3/45 \

\n
5
tn
t
. ~4.10!

The Hamiltonian~4.1! is invariant under reflections about
theq1 andq2 axes and under time reversal with the symme-
tries of the eigenstates classified as

PiC~q!5p iC~q!, ~4.11!

wherep i561.
For the entire near-integrable regimelP$20.15,0.0%, we

calculate the level curves for the first 12 000 levels. This is
sufficient for the purpose of isolating a resonance and show-
ing its contribution to the density of states making a full
transition from the Berry-Tabor amplitude to the Gutzwiller

amplitude; much longer level sequences are easily generated,
but are unnecessary here. To compare with the theoretical
expectations, the quantum spectrum must be transformed ac-
cording to Eq.~3.20!. Using

r~ t,E!5 (
n50

`

d„E2En~ t !… ~4.12!

and noting that Eq. ~4.10! is equivalent to
En(t)5En(\51)t24/3, it is straightforward to show that

R~S,E51!5
3

4 (
n51

`

@En~\51!#3/8e2~a1 iS!@En~\51!#3/4,

~4.13!

which is to be compared with Eqs.~3.21! and ~3.22!, evalu-
ated with the classical actions and stabilities.

V. RESULTS

Before verifying the theory, we first illustrate in Fig. 2 the
spectrum of peaks produced by the inverse-\ transformation
of the quantum spectrum. The two spectra shown cover op-
posite limiting frontiers of the near-integrable regime,
namely, l50.0 andl520.15. Note the general features
one can expect. First, some of the peaks have begun or ap-
pear to have split. Next, the positions of the peaks shift very
little. Finally, there is a significant rearrangement of some of
the magnitudes of the peaks even though both curves belong
to the same near-integrable regime. Furthermore, even

FIG. 2. Quantum action functionuR(S,E51)u for two different
couplings: the integrable casel50.00 and the large perturbation
limit of the near-integrable regime to nearly the mixed phase space
regimel520.15.
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though the Berry-Tabor amplitudes are larger than the
Gutzwiller amplitudes by\21/2 and one might have expected
the amplitudes to decrease, the perturbation of the system
forms several new peaks as large as or larger than the Berry-
Tabor magnitudes. The new large peaks exist forl values
quite far from integrability.

A. Integrable systems

We begin with the Berry-Tabor formula, which has ex-
isted for about 20 years. Its precision in predicting magni-
tudes has sometimes been found to be a little disappointing
@3,14#. This motivated, for instance, the authors of@3# to
include complex trajectories to obtain better accuracy. Here
we have long spectral sequences that can be used to shed
some light on this difficulty. Because there is no harmonic
component in the quartic oscillator’s potential, neither Berry-
Tabor nor Gutzwiller amplitudes are applicable to tori hav-
ing one of their coprime integers equal to zero as in
M5(m1,0) orM5(0,m2). It is not of sufficient interest here
to derive formulas specific to these special tori and no at-
tempt is made to include their effects in the comparison to
the semiclassical theory. With that exception, in Fig. 3 we
find excellent agreement, to within a couple of percent or
better, between the Berry-Tabor theory compared to the
quantum results. We conclude that Berry-Tabor theory
works extremely well, except perhaps too close to the
ground-state region of the spectrum. The best accuracy is

found for tori with smaller actions. In particular, the
M5(1,1) torus contribution shown expanded in Fig. 3 is
good to about 1% of the magnitude in the peak region with
the phase error not worse than about 2°. This sets the gen-
eral scale for the quality of results we would like to see
across the near-integrable regime for the comparison of the
theory for resonances presented here.

On closer inspection, it can be seen that some degradation
shows up in the tails and some peaks for tori with larger
actions. As a general rule, semiclassical approximations have
a tendency to break down at longer propagation times. More-
over, it can be seen from the definition Eq.~3.20! that con-
tributions of a resonance toR(S,E) is dominated by different
part of the spectrum depending on whether the central peak
or the tail is considered. Indeed, forS.S̄ the integral Eq.
~3.20! is dominated byt ~i.e.,\21) of the ordera21. There-
fore if a can be chosen small enough, this corresponds to
quantum levels well within the semiclassical regime. On the
contrary, the tails are dominated by contributions fromt of
the order (S2Sj )

21 independently of how smalla becomes.
Thus the tails are dominated more by the lower levels in the
spectrum and it is natural for errors in the semiclassical ap-
proximation to appear there first. An additional effect for
larger values of the action is the increased density of periodic
trajectories. Several poorly reproduced tails may overlap and
lead to cumulative errors. Nevertheless, the Berry-Tabor
theory works beautifully for the quartic oscillators in our
energy regime.

B. Near-integrable regime

In surveying the quantum results, we found the following
properties. There were no peaks appearing unrelated to some
classical orbit, i.e., no ghost orbits@23# in this regime. Sev-
eral of the peaks that appeared to be splitting under pertur-
bation were just the consequence of two quite distinct tori
beginning nearly degenerate in action and moving apart.
Many magnitudes were left almost unchanged, yet others
were greatly affected. One can also find examples of con-
structive interference where amplitudes increased as orbits
crossed paths. It happened that very few resonances in our
present calculation~just 12 000 levels per value ofl) could
be followed from the Berry-Tabor well into the Gutzwiller
regime~two separated contributions to the density of states!.
They are all for tori withM5(k,k) k51,2,3,. . . . For the
other resonancesDS/\ is not sufficiently large to observe
peak splitting. In addition, although the number of destroyed
tori increases with the perturbation, the behavior ofgE in the
neighborhood of the surviving ones is only slightly affected
even for significant couplings. This is seen in Fig. 4 where
the curvegE(I 1) at l520.10 appears almost on top of its
unperturbed analog wherever both are defined. Derivatives
of gE magnify the differences between the perturbed and
unperturbed results; nevertheless,gE9 shows only small varia-
tion throughout the nearly integrable regime. Note that in the
gaps ofgE corresponding to resonances, derivatives can only
be taken through an extrapolation. A purelyclassicalvalue
of gE9 cannot be defined without ambiguity, but far from
bifurcations ~see below! the results are always consistent
with Eqs.~3.10! and ~3.11!.

FIG. 3. Comparison of the quantum action function and the
semiclassical theory for integrable systems (l50). The solid curve
is the quantum results and the dashed curve the Berry-Tabor for-
mula. The short vertical lines below mark the actions of the classi-
cal tori. TheM5(1,1) peak is shown expanded as an inset to show
the quality of agreement better. Note thatE51.
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The best resonance to begin testing the theory is for
M5(1,1) for several reasons. To begin with, it is isolated
well enough from other orbits to follow unambiguously. Its
stable and unstable orbits are well separated byl520.15;
i.e. its entire transition from the Berry-Tabor to Gutzwiller
limits emerges. Also for this case, the independently calcu-
lated value ofgE9 for the integrable case (l50) leads to
consistency with Eqs.~3.10! to better than 5% across the
entire near-integrable regime. This is illustrated in Fig. 5.
The value ofgE9 for l50 was calculated by explicit con-
struction of the energy surface in the neighborhood of
M5(1,1) and evaluating its curvature analytically. The other

gE9 values nearM5(1,1) for different perturbations were de-
rived via the relations given in Eq.~3.10!. There is excellent
agreement between thel→0 limit from the derived values
of gE9 and the analytic result, which validates the use of Eq.
~3.10!. Finally, the asymmetry of the stable and unstable or-
bits as measured byã(e) varies smoothly withl and does
not exceed 10%. It is interesting to note thatã(e) does not
appear to approach zero asl→0. So the ratio
2Det(Mu21)/Det(Ms21) does not approach 1 even for
infinitesimal classical perturbations to the integrable system;
recall Eq.~2.25! deriving from Ozorio de Almeida’s ansatz.
Of course, the asymmetric term in Eq.~3.14! must vanish as
l→0, but this is attained becauseDS, DT→0 and the Bessel
function J1(0)50 and not becauseã(e)→0. In Fig. 6 we
show a comparison of the semiclassical theory with the
quantum results using thegE9 andã(e) values given in Fig. 5
The agreement is excellent, being better than 3% in error in
the domain of the peak for all the values ofl; see, for ex-
ample, Fig. 7.

If we useã(e)50 andgE9 of the integrable system~Ozo-
rio de Almeida’s ansatz!, the errors in the semiclassical
theory may be significantly larger, depending on the reso-
nance. The benefit of accounting forDT, ã(e), and a vary-
ing gE9 become more pronounced for theM5(2,2) orbits
whose amplitudes would be poorly reproduced otherwise.
The asymmetry between the stable and unstable orbits is
amplified by the second tracing of theM5(1,1) orbits. This
is illustrated in Fig. 8. We plotuR(S,E)u, but only along the
emerging ridges associated with the stable and unstable or-
bits as a function of l, i.e., uR„Ss(l),E…u and
uR„Su(l),E…u. The curves generated by the Ozorio de
Almeida ansatz, the Gutzwiller trace formula, and the theory
presented in this paper are plotted along with the curve gen-

FIG. 4. Comparison of the classically computed function
I 25gE(I 1) at l50.00 ~thin! andl520.10 ~thick!. In the coupled
case, the curve is only defined for the tori that have not been de-
stroyed by the perturbation. Despite the strong perturbation, the
curve appears almost unchanged.

FIG. 5. Drawn areg9(IM) andã(e) as functions of the coupling
strength calculated from Eqs.~3.10! and ~3.11! for M5(1,1).

FIG. 6. Comparison of the quantum and semiclassical theory of
theM5(1,1) resonance as a function of actionS and perturbation
strengthl. Note thatE51.
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erated by the quantum spectrum for comparison. As ex-
pected, our theory goes asymptotically to the Gutzwiller ex-
pression for large perturbation. Whereas Gutzwiller’s result
begins at infinity for the integrable system, our result and the
ansatz begin at the Berry-Tabor value. The last two curves
follow each other closely up tol520.04 and diverge for
stronger perturbations. Our theory in this case continues to
follow the quantum spectral results closely.

In general, it is expected that the amplitudes should de-
crease with increasing perturbation since the Gutzwiller am-
plitudes are lower order in\ than the Berry-Tabor ampli-
tudes. In fact, this happens up to a point at which the stable
orbit branch passes through a minimum~its stability deter-
minant passes through a maximum, here 4!. Its amplitude
then increases rapidly and, in all the quartic oscillator results
we checked, it always, at some perturbation strength, ex-

ceeds the initial Berry-Tabor amplitudes. Consider the
M5(3,3) case. Although these orbits are just the third tra-
versal of theM5(1,1) orbits, the theory presented here can
no longer follow the quantum results. A first signal that
something is going wrong is that the behavior ofgE9 and
ã(e) derived from Eqs.~3.10! and~3.11! is much more dra-
matic; see Fig. 9. In principle, although we allow some varia-
tion of gE9 with the perturbation, its value remains associated
~at a givenl) to a torus and should not depend on repetition
numbers. ThereforegE9 should be the same for all the
M5(k,k), k51,2,3. This is actually the case forM5(1,1)
and (2,2). However, as observed in Fig. 9, forM5(3,3) this
is true only for small couplings, and asl approaches
20.15,gE9 evolves towards zero, indicating an infinity in the
prefactor of the semiclassical theory andã(e) towards21
@i.e.,2Det(Mu21)/Det(Ms21)→`#.

The difficulty encountered here is actually the same as
that originally pointed out by Gutzwiller in his derivation of
the trace formula, namely, that for elliptic orbit a divergence
appears as Det(Ms21)→0. This situation corresponds ge-
nerically to a bifurcation of the elliptic orbit and for the
M5(1,1) resonance to the creation of a 2/3 resonance in the
neighborhood of the stable orbit—a resonance within a reso-
nance; see Fig. 10. For largeDS/\ @as is the case here for the
M (3,3) resonance near the bifurcation# our result is strictly
equivalent to the one obtained using the Gutzwiller trace
formula, yielding the usual description: the stable orbit con-
tribution is infinitely stronger than the unstable one~i.e., only
the stable branch is diverging!. The essence of this behavior
is reflected in the quantum results; see Fig. 11. The initial
quantum peak splits asymmetrically and the stable branch
rises above its integrable system value after initially decreas-

FIG. 7. Cross section through Fig. 6 for the perturbation cou-
pling parameterl520.07.

FIG. 8. Comparison of the quantum~solid! and semiclassical
~dashed! action functions uR„Su(l)…u and uR„Ss(l)…u for the
M5(2,2) resonance. The semiclassical predictions from the
Gutzwiller amplitude, Ozorio de Almeida ansatz, and our work are
plotted for comparison.

FIG. 9. Drawn areg9(IM) andã(e) as functions of the coupling
strength calculated from Eqs.~ 3.10! and ~ 3.11! for M5(3,3).
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ing. Of course, there is no singularity in the quantum mag-
nitude as in the semiclassical theory, which is breaking
down. Actually all the tall action peaks emerging at large
perturbation can be associated with this kind of structure.
Interestingly in our results, the coalescences more than com-
pensate the reduction in order of\ in going from the Berry-
Tabor to the Gutzwiller limit. One method to properly ac-
count~in the largeDS/\ regime! for the magnitude of these
peaks near the classical bifurcation points would be to follow
Ozorio de Almeida and Hannay’s work@12# where normal
forms are given along with some theory.

It should be kept in mind that resonances with small
DS/\ cannot be described properly near a bifurcation by our
method even though the theory is not equivalent there to the
Gutzwiller theory. It happens that Eq.~3.10b! applied at a
bifurcation @i.e., Det(Ms21)50 but DSÞ0# constrainsgE9
to be null, which has no particular reason to be the case. This
simply reflects that the mapping Eq.~3.6! cannot describe a
bifurcation. In fact ~we do not give the figure here!, the

M5(6,9) resonance falls into this class and one sees abso-
lutely no increase in the amplitude near the bifurcation. It
remains extremely close to the Berry-Tabor amplitude
throughout. The alternative mappingj5u11asin(u1)
~which, however, does not yield a closed form expression for
rM) may be used to treat the bifurcation forDS/\.1 or
less. It, however, does not provide a sufficiently good de-
scription of the actual bifurcation process to be used at larger
values ofDS/\.

We make a final related comment on the observation that
several amplitudes appeared to change very little. As pointed
out by Ozorio de Almeida@10#, for primitive orbits, as either
m1 or m2 increases, the action differencesDS decrease rap-
idly. Except for the shortest orbits,DS is so small that the
amplitude remains almost constant and the peak shifts just a
little even for significant perturbation strengths. The theory
presented here is still applicable to these orbits, but just re-
mains essentially equal to the Berry-Tabor formula and this
is borne out with the quantum spectrum. However, even
thoughDS remains close to zero, the stability determinants
do not. Indeed, writing Det(Mu21)522sinh(z/2) and
Det(Ms21)52sin(b/2), a very rough order of magnitude of
z andb can be obtained, assuming they are approximately
proportional to the period of the corresponding orbit. The
coefficient of proportionality can then be understood as a
kind of mean Lyapunov exponent, which increases with the
perturbation. Therefore the determinants of long orbits tend
to move away from zero even faster than for the shortest
periodic orbits. In particular, with increasing perturbation,
the determinant of the stable orbit will leave and return to
near zero, asb→2p, where the semiclassical theory given
here fails, before the resonance contribution to the density of
states moves away from the Berry-Tabor regime. For the
majority of the longer periodic orbits, as one increases the
perturbation strength beyond the near-integrable regime a
new treatment will need to be found.

VI. CONCLUSION

The theory presented in this paper extends the semiclas-
sical theory of Ozorio de Almeida for near-integrable sys-
tems. We present uniform expressions, fully interpolating the
Berry-Tabor and Gutzwiller amplitudes across the whole
nearly integrable regime. The functional forms obtained are
expressed explicitly in terms of the canonical invariant prop-
erties of the periodic orbits, i.e., action, stability matrix de-
terminant, phase index, and period. This has made it possible
to perform a complete implementation of the theory for a
model system and to give a fairly complete discussion of the
semiclassical theory. The study directs our attention toward
some rather interesting classical dynamical effects visible in
the quantum system.

From a qualitative point of view, the phase space structure
of an integrable system is unstable with respect to generic
perturbations. It is foliated by tori that serve as geometrical
structures for Einstein-Brillouin-Keller~EBK! quantization
in the more familiar semiclassical theory. In a trace formula
approach, i.e., Berry-Tabor theory, it is the resonant tori
(N21 parameter family of periodic orbits! that play the
dominant role in the theory. As an infinitesimal perturbation
is introduced, these rational tori are replaced by resonances

FIG. 10. Blowup of the stable island surrounding the stable orbit
of the primary resonanceM5(1,1) for a coupling strength
l520.17, which is slightly stronger than the bifurcation value
lbif.20.15. Note that for symmetry reasons, six islands are visible
instead of three.

FIG. 11. Quantum action function of theM5(3,3) resonance as
a function of actionS and perturbation strengthl, showing the
consequences of the bifurcation of the stable orbit. In a sense it is
simpler to locate the classical bifurcation with the quantum spec-
trum than by calculating classical trajectories. Note thatE51.
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organized around two ‘‘surviving’’ periodic orbits, one
stable and the other unstable. Discrete symmetries may in-
crease this number and can be incorporated in the theory as
well.

First, consider just the shortest periodic orbits; they are
associated with the largest resonances. With increasing per-
turbation, their resonance structures grow quickly. At some
perturbation strength, the two surviving short orbits become
effectively isolated from one another in their contributions to
the density of states. Excluding further orbit bifurcations for
the moment, the stable and unstable orbit contributions
should approach the sum of the individual Gutzwiller expres-
sions for the amplitudes of isolated orbits. This was borne
out with the quantum spectrum of the quartic oscillators in
Sec. V where the entire transitional behavior from Berry-
Tabor to Gutzwiller behavior was observed. The extended
semiclassical theory followed the quantum results very accu-
rately. The small residual errors were of the same relative
size as occurring in the Berry-Tabor or Gutzwiller limits.

An interesting consequence of the fact that the theory pre-
sented fully interpolates the Berry-Tabor and Gutzwiller ex-
pressions is that it works well beyond where the first-order
classical perturbation theory used in its derivation might be
anticipated to be valid. Instead, it fails where the Gutzwiller
theory does for nonzero perturbations, i.e., in circumstances
where the stable orbit’s Det(Ms21)→0. Still considering
only the shortest periodic orbits, this occurs for perturbations
strong enough to produce globalized chaos well into the
mixed phase space regime~which we found very encourag-
ing with respect to beginning to understand those systems!.
To be a little more explicit, the short orbit class is marked by
having DS/\ exceed 1 without the perturbation sending
Det(Ms21) through 0 and for this class our treatment
works extremely well.

Turning now to the longer orbits, we need to distinguish
two classes, those that are repetitions of some short orbit and
those that are not. The distinction is important due to the
behavior ofDS and the eigenvalues ofMs . For ther th rep-
etition of some orbit,DS is r times the action difference of
the primitive periodic orbit (r51). Likewise, ther th repeti-
tion of Ms has eigenvalues that are ther th power of the
primitives, exp(6irl). In essence a much smaller perturba-
tion will lead to Det(Ms21)→0 for a repetition, but since
DS is also increasing proportionally tor , these orbits also
generally attainDS/\.1 without their determinants passing
through zero. They therefore also belong to the short orbit
class. However, for them, the theory breaks down under
smaller perturbations. All the newly created high peaks
showing up in the perturbed\21-transformed spectra were
due to this effect. The stable orbits forM5(3,3), (4,4), and
(5,5) emerge from their respective origins at zero perturba-
tion by separating from the unstable orbit and decreasing in
magnitude. Still within the near-integrable regime, they re-
grow into peaks taller than those that existed even for the
integrable system. Since Det(Ms21)→0 indicates an orbit
bifurcation from the stable orbit, a new resonance is being
created within the original resonance. For these cases, there
were thus very sizable effects in the quantum spectrum. Ozo-
rio de Almeida and Hannay have discussed how to uniform
the semiclassical theory for such cases@12#, but we did not
enter the subject here.

As pointed out by Ozorio de Almeida@10#, for the re-
maining infinity of orbits the situation is different. For them,
DS/\ does not exceed 1 for perturbations strong enough to
make Det(Ms21)50. DS for a given perturbation shrinks
rapidly with increase inm1 or m2 . In our spectra, even for
M5(2,3), for example, we found thatDS/\ was much less
than one across the entire near-integrable regime. Not sur-
prisingly then, its contribution remained, to a high degree of
accuracy, equal to the Berry-Tabor amplitude throughout.
The extended theory remains valid for these orbits up to a
perturbation sufficiently strong to make Det(Ms21)50 just
as with the short orbit class. However, here the theory is not
that interesting since it predicts correctly an approximate
equivalence to the Berry-Tabor amplitude up to the point
where it fails~although it does suggest usingS̄j and T̄j sub-
stituted for the action and period of the motion on the origi-
nal torus!. In addition, even the repetitionM5(6,9) behaved
in the same way with no change from the Berry-Tabor am-
plitude. This is in spite of the fact that its Det(Ms21)50
near the large perturbation end of the near-integrable regime.
That it showed no evidence of the bifurcation is natural in
the sense that the resonance is so narrow as to be indistin-
guishable from a torus, so the resonance within the reso-
nance structure appears to play no role. At some point for a
strong enough perturbation though, one would expect this
equivalence to Berry-Tabor to fail for long orbits, but appar-
ently not by following the same Bessel function interpolation
as found for the shorter orbits.

This points to one of the key problems remaining to be
solved in order to understand mixed phase space dynamics
and the associated trace formulas. It is necessary to extend
our approach to the case of a larger number of periodic orbits
within the resonance. From a technical point of view, we
recall the assumption made in our derivation thatdShas only
two extrema. Because these extrema correspond to the orbits
surviving the perturbation, this assumption is precisely
equivalent to restricting ourselves to the range of perturba-
tion weak enough that there is no bifurcation. Extending the
range of applicability of the semiclassical theory further to-
ward the mixed regime will therefore require relaxing this
constraint, though still keeping the desire to express all the
parameters of the theory in terms of the periodic orbits’ ca-
nonically invariant quantities. Although certainly not a
simple task, this might provide one approach to tackling the
study of semiclassical trace formulas for the mixed phase
space regime.
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APPENDIX A: TRANSFORMATION OF DM

In this appendix we show that in the change of variable
Eq. ~2.11!, the determinant Eq.~2.6! of the Green’s function
actually transforms as a density, i.e., that

DM~q!dq1dq25DM~u!du1du2 .

A general result@24# is that for point transformations, that is,
for canonical transformation (p,q)→(P,Q) such that the
new positionQ does not depend on the old momentump,
DM transforms as a density. The difficulty here is that the
canonical transformation Eq.~2.11! is not a point transfor-
mation.

Let us thus introduce a new set of canonical variables
(P,Q) defined by

Q~q!5u~q,JM !. ~A1!

On the torusJM , Q, and u are equivalent, but this is no
longer the case as one considers a point outside of this torus.
Because Eq.~A1! is a point transformation, one has indeed
for any phase space pointr on the torusJM

DM~q!dq1dq25DM~Q!dQ1dQ2 ,

and since one remains on the torus the measuredu1du2 is
equal todQ1dQ2 . Thus, applying the right-hand side of Eq.
~2.6!, what remains to be shown is that
]2S/]Q1]Q185]2S/]u1]u18 , i.e., ]Q18/]P15]u18/]J1 .

For this purpose, consider two Poincare´ sections,Pu at
u25const andPQ atQ25const, containing the pointr . Let
T be the mapping such that a trajectory started at (u1 ,J1) in
Pu crossesPQ at (Q1 ,P1)5T(u1 ,J1) anddT is its linear-
ization at r . Finally, we noteMQ andM u the monodromy
matrices in Pu and PQ . Becauseu1[Q1 on the torus
IM , dT5( t21

1
t22

t12). Moreover, Mu is a sheer, i.e.,

M u5( 0
1

1
m12

u

) (m12
u 5]u18/]J1). Therefore

MQ5~dT!M u~dT!21

5S t222t21~m12
u 1t12! m12

u

t21
2 m12

u t221t21~m12
u 2t12!

D
andm12

Q5m12
u , which is the desired property.

APPENDIX B: COMPUTATION
OF THE MASLOV INDICES

In Sec. II, we have introduced three kinds of Maslov in-
dices:h, s, and the pair (n1 ,n2), associated, respectively,
with the semiclassical Green’s function, the Gutzwiller trace
formula, and the two independent closed pathsC1 andC2 of
a torus on which the actions (I 1 ,I 2) are computed. All three
of them are ‘‘true’’ Maslov indices, in the sense that they
represent the number of times a curve defined on a specified
Lagrangian manifold crosses a line where the projection of
the manifold on the configuration space is singular~the index
depends therefore both on the curve and on the manifold!.
This is the case in particular for the indexs @16#, although
here we have only used it in the way it was original defined
by Gutzwiller @1# @see the text just after Eq.~3.17!#, which

allows a direct and simple expression in term ofh.
The aim of this appendix is to prove Eq.~2.20!, i.e., that

for a given torusIM ,

hM5~M1n11M2n2!2Q@gE9 #

(Q is the Heaviside step function!. To see this, let us first
considerh̃M , the Maslov index of the periodic orbitM on
the torusIM . By definition of the topology (M1 ,M2) of the
periodic orbit, the trajectory windsM1 times aroundC1 and
M2 times aroundC2 and thereforeh̃M5(M1n11M2n2).
Now h̃M andhM correspond to the same curve~a periodic
orbit of topologyM ), but not to the same manifold: the
former is associated with the invariant torus, whereas the
latter is the manifold on which the semiclassical Green’s
functionG(r ,r 8) is constructed, namely, the set of trajecto-
ries started atr with arbitrary momentum~on the energy
surfaceE). Figure 12 then contains all the information re-
quired to relateh̃M andhM . Crossings of the singularities of
the manifold correspond to places where the tangent of the
manifold becomes vertical. Considering the linearized mo-
tion around the orbit in a Poincare´ section attached to the
orbit, this means that the Maslov index is actually the num-
ber of traversals of the vertical, counted positively for clock-
ward traversal and negatively for an anticlockward traversal,
of the image of the vector tangent to the manifold at the
starting pointr . This is, respectively,û1 for h̃M and p̂1 for
hM . There is, however, a slight complication forp̂1 since its
original position is precisely on the vertical. The prescription

FIG. 12. Schematic representation of the motion of the tangent
to the invariant torus~thick dashed arrow! and to the Lagrangian
manifold on which the semiclassical Green’s function is constructed
~thick solid arrow! in a u25const Poincare´ section. Because the
torus is an invariant manifold, the former (û1) is mapped onto itself
after winding (M1n11M2n2)/2 times around the periodic orbit. By
continuity p̂1 therefore crossesM1n11M2n2 or M1n11M2n221
depending on whether]p18/]q1 is positive @final position ~a!# or
negative@final position~b!#.
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for the Green’s function is then to consider thatp̂1 is actually
on the right upper quadrant~i.e., has an infinitesimal positive
component on theq1 axis!. Now, since on the torusIM the
Poincare´ map is the identity,û1 makes exactlyh̃M/2 turns in
one iteration of the periodic orbit. By continuity,p̂1 makes
the same number of traversal of the vertical asû1 if
]q18/]p1 is positive and one less if]q18/]p1 is negative.
Since, moreover, the Poincare´ map is a sheer in
the (u1 ,J1) coordinates, sgn@]q18/]p1#5sgn@]u18/]J1#
5sgn@2gE9 # @where the last equality is deduced from Eqs.
~2.15! and ~2.16!# and thereforehM5h̃M2Q@gE9 #.

APPENDIX C: DERIVATION OF EQ. „3.8… FOR N52

Consider in a Poincare´ sectionq25const a fixed point
~periodic orbit! (q1

0 ,p1
0) of the Poincare´ map. Introducing

dq15q12q1
0 and dp15p12p1

0 , the linearized motion
around the orbit can be characterized either by the mono-
dromy matrixM5(mi j ) ( i , j51,2)

dq185m11dq11m12dp1 ,

dp185m21dq11m22dp1

~with DetM51) or by the quadratic approximation to the
action

S~q1 ,q18!5S01p1
0~dq182dq1!

1FA2 ~dq1!
21

B

2
~dq18!21Cdq1dq18G .

Using the relations]S/]q152p1 and]S/]q185p18 gives

dp152Adq12Cdq18 ,

dp1851Cdq11Bdq18

and thusA5m11/m12, B5m22/m12, andC521/m12. With
S(q1)5S(q1 ,q1), one has therefored2S/dq1

25A1B
12C5(TrM22)/(2m12), which, noting that DetM51 im-
plies Det(M21)522TrM , gives the desired results

d2S

dq1
2 52

Det~M21!

]q18/]p1
.
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